st5-base-mean-2000 / README.md
sobamchan's picture
Upload folder using huggingface_hub
7ed39c5 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:557850
  - loss:MultipleNegativesRankingLoss
base_model: google-t5/t5-base
widget:
  - source_sentence: A man is jumping unto his filthy bed.
    sentences:
      - A young male is looking at a newspaper while 2 females walks past him.
      - The bed is dirty.
      - The man is on the moon.
  - source_sentence: >-
      A carefully balanced male stands on one foot near a clean ocean beach
      area.
    sentences:
      - A man is ouside near the beach.
      - Three policemen patrol the streets on bikes
      - A man is sitting on his couch.
  - source_sentence: The man is wearing a blue shirt.
    sentences:
      - Near the trashcan the man stood and smoked
      - >-
        A man in a blue shirt leans on a wall beside a road with a blue van and
        red car with water in the background.
      - A man in a black shirt is playing a guitar.
  - source_sentence: The girls are outdoors.
    sentences:
      - Two girls riding on an amusement part ride.
      - a guy laughs while doing laundry
      - >-
        Three girls are standing together in a room, one is listening, one is
        writing on a wall and the third is talking to them.
  - source_sentence: >-
      A construction worker peeking out of a manhole while his coworker sits on
      the sidewalk smiling.
    sentences:
      - A worker is looking out of a manhole.
      - A man is giving a presentation.
      - The workers are both inside the manhole.
datasets:
  - sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on google-t5/t5-base

This is a sentence-transformers model finetuned from google-t5/t5-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-t5/t5-base
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: T5EncoderModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
    'A worker is looking out of a manhole.',
    'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 557,850 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 9.96 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 12.79 tokens
    • max: 44 tokens
    • min: 4 tokens
    • mean: 14.02 tokens
    • max: 57 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 19.41 tokens
    • max: 79 tokens
    • min: 4 tokens
    • mean: 9.69 tokens
    • max: 35 tokens
    • min: 4 tokens
    • mean: 10.35 tokens
    • max: 30 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 1e-05
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0011 10 - 1.8733
0.0023 20 - 1.8726
0.0034 30 - 1.8714
0.0046 40 - 1.8697
0.0057 50 - 1.8675
0.0069 60 - 1.8649
0.0080 70 - 1.8619
0.0092 80 - 1.8584
0.0103 90 - 1.8544
0.0115 100 3.1046 1.8499
0.0126 110 - 1.8451
0.0138 120 - 1.8399
0.0149 130 - 1.8343
0.0161 140 - 1.8283
0.0172 150 - 1.8223
0.0184 160 - 1.8159
0.0195 170 - 1.8091
0.0206 180 - 1.8016
0.0218 190 - 1.7938
0.0229 200 3.0303 1.7858
0.0241 210 - 1.7775
0.0252 220 - 1.7693
0.0264 230 - 1.7605
0.0275 240 - 1.7514
0.0287 250 - 1.7417
0.0298 260 - 1.7320
0.0310 270 - 1.7227
0.0321 280 - 1.7134
0.0333 290 - 1.7040
0.0344 300 2.9459 1.6941
0.0356 310 - 1.6833
0.0367 320 - 1.6725
0.0379 330 - 1.6614
0.0390 340 - 1.6510
0.0402 350 - 1.6402
0.0413 360 - 1.6296
0.0424 370 - 1.6187
0.0436 380 - 1.6073
0.0447 390 - 1.5962
0.0459 400 2.7813 1.5848
0.0470 410 - 1.5735
0.0482 420 - 1.5620
0.0493 430 - 1.5495
0.0505 440 - 1.5375
0.0516 450 - 1.5256
0.0528 460 - 1.5133
0.0539 470 - 1.5012
0.0551 480 - 1.4892
0.0562 490 - 1.4769
0.0574 500 2.6308 1.4640
0.0585 510 - 1.4513
0.0597 520 - 1.4391
0.0608 530 - 1.4262
0.0619 540 - 1.4130
0.0631 550 - 1.3998
0.0642 560 - 1.3874
0.0654 570 - 1.3752
0.0665 580 - 1.3620
0.0677 590 - 1.3485
0.0688 600 2.4452 1.3350
0.0700 610 - 1.3213
0.0711 620 - 1.3088
0.0723 630 - 1.2965
0.0734 640 - 1.2839
0.0746 650 - 1.2713
0.0757 660 - 1.2592
0.0769 670 - 1.2466
0.0780 680 - 1.2332
0.0792 690 - 1.2203
0.0803 700 2.2626 1.2077
0.0815 710 - 1.1959
0.0826 720 - 1.1841
0.0837 730 - 1.1725
0.0849 740 - 1.1619
0.0860 750 - 1.1516
0.0872 760 - 1.1416
0.0883 770 - 1.1320
0.0895 780 - 1.1227
0.0906 790 - 1.1138
0.0918 800 2.0044 1.1053
0.0929 810 - 1.0965
0.0941 820 - 1.0879
0.0952 830 - 1.0796
0.0964 840 - 1.0718
0.0975 850 - 1.0644
0.0987 860 - 1.0564
0.0998 870 - 1.0490
0.1010 880 - 1.0417
0.1021 890 - 1.0354
0.1032 900 1.8763 1.0296
0.1044 910 - 1.0239
0.1055 920 - 1.0180
0.1067 930 - 1.0123
0.1078 940 - 1.0065
0.1090 950 - 1.0008
0.1101 960 - 0.9950
0.1113 970 - 0.9894
0.1124 980 - 0.9840
0.1136 990 - 0.9793
0.1147 1000 1.7287 0.9752
0.1159 1010 - 0.9706
0.1170 1020 - 0.9659
0.1182 1030 - 0.9615
0.1193 1040 - 0.9572
0.1205 1050 - 0.9531
0.1216 1060 - 0.9494
0.1227 1070 - 0.9456
0.1239 1080 - 0.9415
0.1250 1090 - 0.9377
0.1262 1100 1.6312 0.9339
0.1273 1110 - 0.9303
0.1285 1120 - 0.9267
0.1296 1130 - 0.9232
0.1308 1140 - 0.9197
0.1319 1150 - 0.9162
0.1331 1160 - 0.9128
0.1342 1170 - 0.9097
0.1354 1180 - 0.9069
0.1365 1190 - 0.9040
0.1377 1200 1.5316 0.9010
0.1388 1210 - 0.8979
0.1400 1220 - 0.8947
0.1411 1230 - 0.8915
0.1423 1240 - 0.8888
0.1434 1250 - 0.8861
0.1445 1260 - 0.8833
0.1457 1270 - 0.8806
0.1468 1280 - 0.8779
0.1480 1290 - 0.8748
0.1491 1300 1.4961 0.8718
0.1503 1310 - 0.8690
0.1514 1320 - 0.8664
0.1526 1330 - 0.8635
0.1537 1340 - 0.8603
0.1549 1350 - 0.8574
0.1560 1360 - 0.8545
0.1572 1370 - 0.8521
0.1583 1380 - 0.8497
0.1595 1390 - 0.8474
0.1606 1400 1.451 0.8453
0.1618 1410 - 0.8429
0.1629 1420 - 0.8404
0.1640 1430 - 0.8380
0.1652 1440 - 0.8357
0.1663 1450 - 0.8336
0.1675 1460 - 0.8312
0.1686 1470 - 0.8289
0.1698 1480 - 0.8262
0.1709 1490 - 0.8236
0.1721 1500 1.4177 0.8213
0.1732 1510 - 0.8189
0.1744 1520 - 0.8168
0.1755 1530 - 0.8147
0.1767 1540 - 0.8127
0.1778 1550 - 0.8107
0.1790 1560 - 0.8082
0.1801 1570 - 0.8059
0.1813 1580 - 0.8036
0.1824 1590 - 0.8015
0.1835 1600 1.3734 0.7993
0.1847 1610 - 0.7970
0.1858 1620 - 0.7948
0.1870 1630 - 0.7922
0.1881 1640 - 0.7900
0.1893 1650 - 0.7877
0.1904 1660 - 0.7852
0.1916 1670 - 0.7829
0.1927 1680 - 0.7804
0.1939 1690 - 0.7779
0.1950 1700 1.3327 0.7757
0.1962 1710 - 0.7738
0.1973 1720 - 0.7719
0.1985 1730 - 0.7700
0.1996 1740 - 0.7679
0.2008 1750 - 0.7658
0.2019 1760 - 0.7641
0.2031 1770 - 0.7621
0.2042 1780 - 0.7601
0.2053 1790 - 0.7580
0.2065 1800 1.2804 0.7558
0.2076 1810 - 0.7536
0.2088 1820 - 0.7514
0.2099 1830 - 0.7493
0.2111 1840 - 0.7473
0.2122 1850 - 0.7451
0.2134 1860 - 0.7429
0.2145 1870 - 0.7408
0.2157 1880 - 0.7389
0.2168 1890 - 0.7368
0.2180 1900 1.2255 0.7349
0.2191 1910 - 0.7328
0.2203 1920 - 0.7310
0.2214 1930 - 0.7293
0.2226 1940 - 0.7277
0.2237 1950 - 0.7259
0.2248 1960 - 0.7240
0.2260 1970 - 0.7221
0.2271 1980 - 0.7203
0.2283 1990 - 0.7184
0.2294 2000 1.2635 0.7165

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.2.0+cu121
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}