skaliy's picture
Update README.md
caa599e
|
raw
history blame
5.33 kB
metadata
language:
  - en
pipeline_tag: image-segmentation
tags:
  - medical

Endometrial cancer segmentation

This repository contains weights and exported learner (encapsulates both the model architecture and its trained parameters) for a deep learning model designed to automate the segmentation of endometrial cancer on MR images. Our VIBE model utilizes a Residual U-Net architecture, trained on data derived from the study Automated segmentation of endometrial cancer on MR images using deep learning. The primary objective of this repository is to reproduce the results reported in the study. In addition, we have looked at improving the segmentation performance using multi-sequence MR images (T2w, VIBE, and ADC) as reported in the study Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network.

Requirements

Last checked and validated with fastMONAI version 0.3.4. Please ensure that you have the correct version of fastMONAI installed to guarantee the correct operation of the model.

Usage

The source code for training the model and running inference on your own data is available at: https://github.com/MMIV-ML/fastMONAI/tree/master/research/endometrial_cancer.

Results for VIBE

The box plot of the predictions on the validation set:

The results from the validation set are also presented in the table below:

subject_id tumor_vol inter_rater r1_ml r2_ml
29 4.16 0.201835 0.806382 0.006231
32 8.00 0.684142 0.293306 0.209449
36 19.06 0.928750 0.793611 0.785335
47 11.01 0.944209 0.905159 0.902548
50 6.26 0.722867 0.619272 0.631579
65 13.09 0.930613 0.879279 0.850546
67 3.71 0.943498 0.887189 0.878163
75 7.16 0.263539 0.774411 0.266463
86 7.04 0.842577 0.821208 0.798148
135 8.10 0.839964 0.758176 0.680348
140 19.78 0.895506 0.936177 0.874019
164 16.98 0.905008 0.923559 0.887268
246 6.59 0.899448 0.907503 0.871254
255 36.22 0.955784 0.927517 0.921816
343 0.69 0.528261 0.840237 0.600751
349 2.96 0.912664 0.828181 0.778983
367 1.02 0.073485 0.392027 0.117796
370 10.82 0.953443 0.917094 0.908893
371 3.83 0.859781 0.685033 0.618380
375 11.67 0.911141 0.921345 0.910804
377 4.37 0.782994 0.712791 0.680165
381 7.63 0.891990 0.245768 0.237990
385 2.67 0.803215 0.641916 0.601690
395 0.68 0.770738 0.204418 0.242908
397 5.94 0.904544 0.882265 0.874036
409 11.86 0.944934 0.900965 0.901000
411 5.98 0.949977 0.933271 0.929499
425 0.91 0.802867 0.602796 0.559908
434 94.42 0.894601 0.590374 0.580553
531 22.08 0.892250 0.555015 0.505062
540 8.35 0.923702 0.895905 0.880058

Median DSC: 0.8946, 0.8212, 0.779

Results for multi-sequence (T2, VIBE, and ADC)

The box plot of the predictions on the validation set:

The results from the validation set are also presented in the table below:

Sure, here is your data without the index numbers, in Markdown table format:

subject_id tumor_vol inter_rater r1_ml r2_ml
29 4.16 0.201835 0.859937 0.148586
32 8.00 0.684142 0.662912 0.515606
36 19.06 0.928750 0.903445 0.889360
47 11.01 0.944209 0.907479 0.907132
50 6.26 0.722867 0.587017 0.547842
65 13.09 0.930613 0.889782 0.862255
67 3.71 0.943498 0.872207 0.862281
75 7.16 0.263539 0.750735 0.205290
86 7.04 0.842577 0.872160 0.813740
135 8.10 0.839964 0.808324 0.751063
140 19.78 0.895506 0.907457 0.852548
164 16.98 0.905008 0.925958 0.893707
246 6.59 0.899448 0.906569 0.852195
255 36.22 0.955784 0.942831 0.945464
343 0.69 0.528261 0.875817 0.463243
349 2.96 0.912664 0.853302 0.821028
367 1.02 0.073485 0.391209 0.086412
370 10.82 0.953443 0.916154 0.911768
371 3.83 0.859781 0.665516 0.637862
375 11.67 0.911141 0.898501 0.910147
377 4.37 0.782994 0.714387 0.647229
381 7.63 0.891990 0.437500 0.430847
385 2.67 0.803215 0.688608 0.624595
395 0.68 0.770738 0.400970 0.444584
397 5.94 0.904544 0.868022 0.850653
409 11.86 0.944934 0.888056 0.885981
411 5.98 0.949977 0.884870 0.883174
425 0.91 0.802867 0.573756 0.490407
434 94.42 0.894601 0.618859 0.605528
531 22.08 0.892250 0.348378 0.318399
540 8.35 0.923702 0.894245 0.884275

Median DSC: 0.8946, 0.868, 0.8137

Support and Contribution

For any issues related to the model or the source code, please open an issue in the corresponding GitHub repository. Contributions to the code or the model are welcome and should be proposed through a pull request.