File size: 5,331 Bytes
7ca1baf
 
 
 
 
9ed253c
7ca1baf
3d17d70
ec2329f
28ec6a4
caa599e
 
 
ec2329f
f3fc250
 
caa599e
f3fc250
 
 
 
ec2329f
355b4c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99b0dd6
355b4c2
 
 
7d11710
355b4c2
99b0dd6
7d11710
ec2329f
355b4c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2329f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
language:
- en
pipeline_tag: image-segmentation
tags:
- medical
---
# Endometrial cancer segmentation

This repository contains weights and exported learner (encapsulates both the model architecture and its trained parameters) for a deep learning model designed to automate the segmentation of endometrial cancer on MR images. 
Our VIBE model utilizes a Residual U-Net architecture, trained on data derived from the study [Automated segmentation of endometrial cancer on MR images using deep learning](https://link.springer.com/content/pdf/10.1038/s41598-020-80068-9.pdf).
The primary objective of this repository is to reproduce the results reported in the study. In addition, we have looked at improving the segmentation performance using multi-sequence MR images (T2w, VIBE, and ADC) as reported in the study [Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network](https://www.nature.com/articles/s41598-021-93792-7).


## Requirements

Last checked and validated with fastMONAI version 0.3.4. Please ensure that you have the correct version of fastMONAI installed to guarantee the correct operation of the model.

## Usage

The source code for training the model and running inference on your own data is available at: https://github.com/MMIV-ML/fastMONAI/tree/master/research/endometrial_cancer.

## Results for VIBE
The box plot of the predictions on the validation set: 
![](vibe_boxplot.png)

The results from the validation set are also presented in the table below:

| subject_id | tumor_vol | inter_rater | r1_ml | r2_ml |
|---|---|---|---|---|
| 29 | 4.16 | 0.201835 | 0.806382 | 0.006231 |
| 32 | 8.00 | 0.684142 | 0.293306 | 0.209449 |
| 36 | 19.06 | 0.928750 | 0.793611 | 0.785335 |
| 47 | 11.01 | 0.944209 | 0.905159 | 0.902548 |
| 50 | 6.26 | 0.722867 | 0.619272 | 0.631579 |
| 65 | 13.09 | 0.930613 | 0.879279 | 0.850546 |
| 67 | 3.71 | 0.943498 | 0.887189 | 0.878163 |
| 75 | 7.16 | 0.263539 | 0.774411 | 0.266463 |
| 86 | 7.04 | 0.842577 | 0.821208 | 0.798148 |
| 135 | 8.10 | 0.839964 | 0.758176 | 0.680348 |
| 140 | 19.78 | 0.895506 | 0.936177 | 0.874019 |
| 164 | 16.98 | 0.905008 | 0.923559 | 0.887268 |
| 246 | 6.59 | 0.899448 | 0.907503 | 0.871254 |
| 255 | 36.22 | 0.955784 | 0.927517 | 0.921816 |
| 343 | 0.69 | 0.528261 | 0.840237 | 0.600751 |
| 349 | 2.96 | 0.912664 | 0.828181 | 0.778983 |
| 367 | 1.02 | 0.073485 | 0.392027 | 0.117796 |
| 370 | 10.82 | 0.953443 | 0.917094 | 0.908893 |
| 371 | 3.83 | 0.859781 | 0.685033 | 0.618380 |
| 375 | 11.67 | 0.911141 | 0.921345 | 0.910804 |
| 377 | 4.37 | 0.782994 | 0.712791 | 0.680165 |
| 381 | 7.63 | 0.891990 | 0.245768 | 0.237990 |
| 385 | 2.67 | 0.803215 | 0.641916 | 0.601690 |
| 395 | 0.68 | 0.770738 | 0.204418 | 0.242908 |
| 397 | 5.94 | 0.904544 | 0.882265 | 0.874036 |
| 409 | 11.86 | 0.944934 | 0.900965 | 0.901000 |
| 411 | 5.98 | 0.949977 | 0.933271 | 0.929499 |
| 425 | 0.91 | 0.802867 | 0.602796 | 0.559908 |
| 434 | 94.42 | 0.894601 | 0.590374 | 0.580553 |
| 531 | 22.08 | 0.892250 | 0.555015 | 0.505062 |
| 540 | 8.35 | 0.923702 | 0.895905 | 0.880058 |

<b>Median DSC</b>: 0.8946, 0.8212, 0.779

## Results for multi-sequence (T2, VIBE, and ADC)
The box plot of the predictions on the validation set: 
![](t2_vibe_adc_boxplot.png)

The results from the validation set are also presented in the table below:

Sure, here is your data without the index numbers, in Markdown table format:

| subject_id | tumor_vol | inter_rater | r1_ml | r2_ml |
|------------|-----------|-------------|-------|-------|
| 29 | 4.16 | 0.201835 | 0.859937 | 0.148586 |
| 32 | 8.00 | 0.684142 | 0.662912 | 0.515606 |
| 36 | 19.06 | 0.928750 | 0.903445 | 0.889360 |
| 47 | 11.01 | 0.944209 | 0.907479 | 0.907132 |
| 50 | 6.26 | 0.722867 | 0.587017 | 0.547842 |
| 65 | 13.09 | 0.930613 | 0.889782 | 0.862255 |
| 67 | 3.71 | 0.943498 | 0.872207 | 0.862281 |
| 75 | 7.16 | 0.263539 | 0.750735 | 0.205290 |
| 86 | 7.04 | 0.842577 | 0.872160 | 0.813740 |
| 135 | 8.10 | 0.839964 | 0.808324 | 0.751063 |
| 140 | 19.78 | 0.895506 | 0.907457 | 0.852548 |
| 164 | 16.98 | 0.905008 | 0.925958 | 0.893707 |
| 246 | 6.59 | 0.899448 | 0.906569 | 0.852195 |
| 255 | 36.22 | 0.955784 | 0.942831 | 0.945464 |
| 343 | 0.69 | 0.528261 | 0.875817 | 0.463243 |
| 349 | 2.96 | 0.912664 | 0.853302 | 0.821028 |
| 367 | 1.02 | 0.073485 | 0.391209 | 0.086412 |
| 370 | 10.82 | 0.953443 | 0.916154 | 0.911768 |
| 371 | 3.83 | 0.859781 | 0.665516 | 0.637862 |
| 375 | 11.67 | 0.911141 | 0.898501 | 0.910147 |
| 377 | 4.37 | 0.782994 | 0.714387 | 0.647229 |
| 381 | 7.63 | 0.891990 | 0.437500 | 0.430847 |
| 385 | 2.67 | 0.803215 | 0.688608 | 0.624595 |
| 395 | 0.68 | 0.770738 | 0.400970 | 0.444584 |
| 397 | 5.94 | 0.904544 | 0.868022 | 0.850653 |
| 409 | 11.86 | 0.944934 | 0.888056 | 0.885981 |
| 411 | 5.98 | 0.949977 | 0.884870 | 0.883174 |
| 425 | 0.91 | 0.802867 | 0.573756 | 0.490407 |
| 434 | 94.42 | 0.894601 | 0.618859 | 0.605528 |
| 531 | 22.08 | 0.892250 | 0.348378 | 0.318399 |
| 540 | 8.35 | 0.923702 | 0.894245 | 0.884275 |

<b>Median DSC</b>: 0.8946, 0.868, 0.8137

## Support and Contribution
For any issues related to the model or the source code, please open an issue in the corresponding GitHub repository. Contributions to the code or the model are welcome and should be proposed through a pull request.