silmi224's picture
Training complete
242dc96 verified
|
raw
history blame
4.37 kB
metadata
base_model: silmi224/finetune-led-35000
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: exp2-led-risalah_data_v2
    results: []

exp2-led-risalah_data_v2

This model is a fine-tuned version of silmi224/finetune-led-35000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6223
  • Rouge1: 20.4859
  • Rouge2: 10.2651
  • Rougel: 14.7662
  • Rougelsum: 19.2553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.3339 1.0 10 2.8010 8.3493 2.4084 6.4284 7.9202
3.1015 2.0 20 2.5436 8.9461 2.3615 6.7822 8.3767
2.779 3.0 30 2.2976 11.5444 3.5251 8.0258 10.4456
2.5118 4.0 40 2.1282 13.3666 4.1766 9.2522 11.9858
2.3057 5.0 50 2.0147 15.021 5.5582 10.3573 14.1171
2.1541 6.0 60 1.9283 15.937 6.8169 11.0627 14.6866
2.0326 7.0 70 1.8601 14.7364 5.5533 10.3599 13.9586
1.938 8.0 80 1.8050 14.8895 6.0535 9.9969 14.4782
1.8462 9.0 90 1.7492 14.0282 5.8353 9.232 13.2213
1.7767 10.0 100 1.7214 16.7779 7.2314 11.1359 16.1369
1.7042 11.0 110 1.6857 18.4084 8.7509 12.7906 17.8835
1.6543 12.0 120 1.6610 19.2909 8.9371 13.1256 17.6865
1.5958 13.0 130 1.6335 19.8664 9.7174 13.6907 18.8411
1.5414 14.0 140 1.6145 19.2112 9.6741 14.1273 17.7185
1.496 15.0 150 1.6234 18.8087 9.0827 13.6381 17.6146
1.4534 16.0 160 1.6035 19.4539 10.135 14.4283 18.5099
1.4177 17.0 170 1.5948 19.6367 10.405 14.0816 18.0333
1.3742 18.0 180 1.5712 18.8434 10.1431 13.7222 17.6519
1.3378 19.0 190 1.5829 18.9662 10.7079 13.9422 18.1457
1.3068 20.0 200 1.5746 20.724 11.3974 15.1529 19.8343
1.2669 21.0 210 1.5476 19.0993 9.6869 13.815 18.5096
1.2315 22.0 220 1.5606 20.4637 10.7418 14.634 19.5588
1.2005 23.0 230 1.5617 19.3271 9.8272 14.2547 18.5378
1.1649 24.0 240 1.5618 20.3699 11.3093 14.2115 19.4149
1.1344 25.0 250 1.5649 20.8124 11.3997 15.8717 20.0457
1.099 26.0 260 1.5985 19.8977 9.9926 14.1038 19.0059
1.065 27.0 270 1.5678 20.7049 10.9546 14.4462 19.5927
1.0344 28.0 280 1.6225 21.3939 11.2821 15.0261 20.3781
1.0029 29.0 290 1.5831 20.7287 11.0327 14.3893 19.9485
0.9711 30.0 300 1.6223 20.4859 10.2651 14.7662 19.2553

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1