File size: 4,367 Bytes
242dc96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
base_model: silmi224/finetune-led-35000
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: exp2-led-risalah_data_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# exp2-led-risalah_data_v2
This model is a fine-tuned version of [silmi224/finetune-led-35000](https://huggingface.co/silmi224/finetune-led-35000) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6223
- Rouge1: 20.4859
- Rouge2: 10.2651
- Rougel: 14.7662
- Rougelsum: 19.2553
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 3.3339 | 1.0 | 10 | 2.8010 | 8.3493 | 2.4084 | 6.4284 | 7.9202 |
| 3.1015 | 2.0 | 20 | 2.5436 | 8.9461 | 2.3615 | 6.7822 | 8.3767 |
| 2.779 | 3.0 | 30 | 2.2976 | 11.5444 | 3.5251 | 8.0258 | 10.4456 |
| 2.5118 | 4.0 | 40 | 2.1282 | 13.3666 | 4.1766 | 9.2522 | 11.9858 |
| 2.3057 | 5.0 | 50 | 2.0147 | 15.021 | 5.5582 | 10.3573 | 14.1171 |
| 2.1541 | 6.0 | 60 | 1.9283 | 15.937 | 6.8169 | 11.0627 | 14.6866 |
| 2.0326 | 7.0 | 70 | 1.8601 | 14.7364 | 5.5533 | 10.3599 | 13.9586 |
| 1.938 | 8.0 | 80 | 1.8050 | 14.8895 | 6.0535 | 9.9969 | 14.4782 |
| 1.8462 | 9.0 | 90 | 1.7492 | 14.0282 | 5.8353 | 9.232 | 13.2213 |
| 1.7767 | 10.0 | 100 | 1.7214 | 16.7779 | 7.2314 | 11.1359 | 16.1369 |
| 1.7042 | 11.0 | 110 | 1.6857 | 18.4084 | 8.7509 | 12.7906 | 17.8835 |
| 1.6543 | 12.0 | 120 | 1.6610 | 19.2909 | 8.9371 | 13.1256 | 17.6865 |
| 1.5958 | 13.0 | 130 | 1.6335 | 19.8664 | 9.7174 | 13.6907 | 18.8411 |
| 1.5414 | 14.0 | 140 | 1.6145 | 19.2112 | 9.6741 | 14.1273 | 17.7185 |
| 1.496 | 15.0 | 150 | 1.6234 | 18.8087 | 9.0827 | 13.6381 | 17.6146 |
| 1.4534 | 16.0 | 160 | 1.6035 | 19.4539 | 10.135 | 14.4283 | 18.5099 |
| 1.4177 | 17.0 | 170 | 1.5948 | 19.6367 | 10.405 | 14.0816 | 18.0333 |
| 1.3742 | 18.0 | 180 | 1.5712 | 18.8434 | 10.1431 | 13.7222 | 17.6519 |
| 1.3378 | 19.0 | 190 | 1.5829 | 18.9662 | 10.7079 | 13.9422 | 18.1457 |
| 1.3068 | 20.0 | 200 | 1.5746 | 20.724 | 11.3974 | 15.1529 | 19.8343 |
| 1.2669 | 21.0 | 210 | 1.5476 | 19.0993 | 9.6869 | 13.815 | 18.5096 |
| 1.2315 | 22.0 | 220 | 1.5606 | 20.4637 | 10.7418 | 14.634 | 19.5588 |
| 1.2005 | 23.0 | 230 | 1.5617 | 19.3271 | 9.8272 | 14.2547 | 18.5378 |
| 1.1649 | 24.0 | 240 | 1.5618 | 20.3699 | 11.3093 | 14.2115 | 19.4149 |
| 1.1344 | 25.0 | 250 | 1.5649 | 20.8124 | 11.3997 | 15.8717 | 20.0457 |
| 1.099 | 26.0 | 260 | 1.5985 | 19.8977 | 9.9926 | 14.1038 | 19.0059 |
| 1.065 | 27.0 | 270 | 1.5678 | 20.7049 | 10.9546 | 14.4462 | 19.5927 |
| 1.0344 | 28.0 | 280 | 1.6225 | 21.3939 | 11.2821 | 15.0261 | 20.3781 |
| 1.0029 | 29.0 | 290 | 1.5831 | 20.7287 | 11.0327 | 14.3893 | 19.9485 |
| 0.9711 | 30.0 | 300 | 1.6223 | 20.4859 | 10.2651 | 14.7662 | 19.2553 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|