base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
- mteb
model-index:
- name: silma-ai/silma-embeddding-sts-0.1
results:
- dataset:
config: ar
name: MTEB MassiveIntentClassification (ar)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 56.489576328177534
- type: f1
value: 54.0532701115665
- type: f1_weighted
value: 56.74231335142343
- type: main_score
value: 56.489576328177534
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: test
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 48.78278412911903
- type: f1
value: 47.56043284146044
- type: f1_weighted
value: 48.98016672316552
- type: main_score
value: 48.78278412911903
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveIntentClassification (ar)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: validation
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 56.768322675848495
- type: f1
value: 53.963930379828895
- type: f1_weighted
value: 56.745501043116796
- type: main_score
value: 56.768322675848495
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveIntentClassification (en)
revision: 4672e20407010da34463acc759c162ca9734bca6
split: validation
type: mteb/amazon_massive_intent
metrics:
- type: accuracy
value: 49.54254795868175
- type: f1
value: 48.048926632026195
- type: f1_weighted
value: 49.60112881916927
- type: main_score
value: 49.54254795868175
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveScenarioClassification (ar)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 62.76395427034298
- type: f1
value: 62.795517645393474
- type: f1_weighted
value: 61.993985553919295
- type: main_score
value: 62.76395427034298
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: test
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 55.457296570275716
- type: f1
value: 53.04898507492993
- type: f1_weighted
value: 55.69280690585543
- type: main_score
value: 55.457296570275716
task:
type: Classification
- dataset:
config: ar
name: MTEB MassiveScenarioClassification (ar)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: validation
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 61.76586325627152
- type: f1
value: 62.096444561700956
- type: f1_weighted
value: 61.253818773337635
- type: main_score
value: 61.76586325627152
task:
type: Classification
- dataset:
config: en
name: MTEB MassiveScenarioClassification (en)
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
split: validation
type: mteb/amazon_massive_scenario
metrics:
- type: accuracy
value: 55.248401377274966
- type: f1
value: 53.5659818815448
- type: f1_weighted
value: 55.392941321965914
- type: main_score
value: 55.248401377274966
task:
type: Classification
- dataset:
config: en-ar
name: MTEB STS17 (en-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 49.60250026530193
- type: cosine_spearman
value: 47.702406527153165
- type: euclidean_pearson
value: 44.81740010078862
- type: euclidean_spearman
value: 42.831111242971396
- type: main_score
value: 47.702406527153165
- type: manhattan_pearson
value: 46.340186748112124
- type: manhattan_spearman
value: 44.689680009909175
- type: pearson
value: 49.60250612700404
- type: spearman
value: 47.702406527153165
task:
type: STS
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 80.50355999312305
- type: cosine_spearman
value: 80.05684742492551
- type: euclidean_pearson
value: 79.79426226586054
- type: euclidean_spearman
value: 78.62531622907113
- type: main_score
value: 80.05684742492551
- type: manhattan_pearson
value: 79.69928765568616
- type: manhattan_spearman
value: 78.57030908261245
- type: pearson
value: 80.50356022284683
- type: spearman
value: 80.05684742492551
task:
type: STS
- dataset:
config: es-en
name: MTEB STS17 (es-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 21.624383947189354
- type: cosine_spearman
value: 21.4038834628452
- type: euclidean_pearson
value: 7.184950714569936
- type: euclidean_spearman
value: 3.4762228403044304
- type: main_score
value: 21.4038834628452
- type: manhattan_pearson
value: 6.551289317075073
- type: manhattan_spearman
value: 2.286368561838714
- type: pearson
value: 21.624390367032202
- type: spearman
value: 21.4038834628452
task:
type: STS
- dataset:
config: en-de
name: MTEB STS17 (en-de)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 31.03301067892329
- type: cosine_spearman
value: 31.85713324783654
- type: euclidean_pearson
value: 21.63310145118274
- type: euclidean_spearman
value: 22.456677151668814
- type: main_score
value: 31.85713324783654
- type: manhattan_pearson
value: 21.67370664986112
- type: manhattan_spearman
value: 21.598819368637155
- type: pearson
value: 31.03301931810337
- type: spearman
value: 31.85713324783654
task:
type: STS
- dataset:
config: fr-en
name: MTEB STS17 (fr-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 30.07580974074585
- type: cosine_spearman
value: 30.070765595685838
- type: euclidean_pearson
value: 17.235942672907232
- type: euclidean_spearman
value: 16.010962024640964
- type: main_score
value: 30.070765595685838
- type: manhattan_pearson
value: 16.98929367890981
- type: manhattan_spearman
value: 15.865314171439055
- type: pearson
value: 30.075805759312956
- type: spearman
value: 30.070765595685838
task:
type: STS
- dataset:
config: nl-en
name: MTEB STS17 (nl-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 38.5738832598024
- type: cosine_spearman
value: 36.23552528353376
- type: euclidean_pearson
value: 28.920909050416814
- type: euclidean_spearman
value: 26.824767359797256
- type: main_score
value: 36.23552528353376
- type: manhattan_pearson
value: 28.449235903219787
- type: manhattan_spearman
value: 26.149497938525712
- type: pearson
value: 38.57388759602166
- type: spearman
value: 36.23552528353376
task:
type: STS
- dataset:
config: it-en
name: MTEB STS17 (it-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 28.440771017135734
- type: cosine_spearman
value: 23.328373210539134
- type: euclidean_pearson
value: 14.616541134326836
- type: euclidean_spearman
value: 7.785452426485771
- type: main_score
value: 23.328373210539134
- type: manhattan_pearson
value: 16.35791121049381
- type: manhattan_spearman
value: 10.350376853181583
- type: pearson
value: 28.440782342934394
- type: spearman
value: 23.328373210539134
task:
type: STS
- dataset:
config: en-tr
name: MTEB STS17 (en-tr)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 10.058384831429683
- type: cosine_spearman
value: 9.208230020320498
- type: euclidean_pearson
value: -3.778073300045484
- type: euclidean_spearman
value: -5.168172155878574
- type: main_score
value: 9.208230020320498
- type: manhattan_pearson
value: -5.081387114365387
- type: manhattan_spearman
value: -5.190932828652431
- type: pearson
value: 10.058387061356784
- type: spearman
value: 9.208230020320498
task:
type: STS
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 85.15496368852482
- type: cosine_spearman
value: 85.58624740720275
- type: euclidean_pearson
value: 82.31207769687893
- type: euclidean_spearman
value: 84.44298391864797
- type: main_score
value: 85.58624740720275
- type: manhattan_pearson
value: 82.19636675129995
- type: manhattan_spearman
value: 83.97030581469602
- type: pearson
value: 85.15496353205859
- type: spearman
value: 85.59382070976062
task:
type: STS
- dataset:
config: es-en
name: MTEB STS22.v2 (es-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 44.24743366469854
- type: cosine_spearman
value: 50.28917533427211
- type: euclidean_pearson
value: 45.87986269990654
- type: euclidean_spearman
value: 51.891514435608855
- type: main_score
value: 50.28917533427211
- type: manhattan_pearson
value: 45.45542397032592
- type: manhattan_spearman
value: 52.411033818833666
- type: pearson
value: 44.24743853113377
- type: spearman
value: 50.28917533427211
task:
type: STS
- dataset:
config: zh-en
name: MTEB STS22.v2 (zh-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 27.73878924884296
- type: cosine_spearman
value: 22.44663617360493
- type: euclidean_pearson
value: 22.868571735387977
- type: euclidean_spearman
value: 18.017657427593637
- type: main_score
value: 22.44663617360493
- type: manhattan_pearson
value: 24.20368152236799
- type: manhattan_spearman
value: 19.341058710109657
- type: pearson
value: 27.738791387167687
- type: spearman
value: 22.44663617360493
task:
type: STS
- dataset:
config: de-en
name: MTEB STS22.v2 (de-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 28.905819837460527
- type: cosine_spearman
value: 32.52679512081778
- type: euclidean_pearson
value: 28.61574417382465
- type: euclidean_spearman
value: 35.447663167023094
- type: main_score
value: 32.52679512081778
- type: manhattan_pearson
value: 28.736369410178426
- type: manhattan_spearman
value: 35.158643077723944
- type: pearson
value: 28.90580871894244
- type: spearman
value: 32.52679512081778
task:
type: STS
- dataset:
config: pl-en
name: MTEB STS22.v2 (pl-en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 48.20842591896265
- type: cosine_spearman
value: 44.838254673346626
- type: euclidean_pearson
value: 51.55940058938421
- type: euclidean_spearman
value: 45.912821863788785
- type: main_score
value: 44.838254673346626
- type: manhattan_pearson
value: 52.13078297712538
- type: manhattan_spearman
value: 47.402814514453425
- type: pearson
value: 48.20843799095813
- type: spearman
value: 44.838254673346626
task:
type: STS
- dataset:
config: en
name: MTEB STS22.v2 (en)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 56.896647953120414
- type: cosine_spearman
value: 60.96741836410487
- type: euclidean_pearson
value: 55.90453382184861
- type: euclidean_spearman
value: 60.273680095845705
- type: main_score
value: 60.96741836410487
- type: manhattan_pearson
value: 55.87830113983942
- type: manhattan_spearman
value: 59.94276270978964
- type: pearson
value: 56.89664991046338
- type: spearman
value: 60.96741836410487
task:
type: STS
- dataset:
config: ar
name: MTEB STS22.v2 (ar)
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
split: test
type: mteb/sts22-crosslingual-sts
metrics:
- type: cosine_pearson
value: 52.70294726367241
- type: cosine_spearman
value: 61.21881191987154
- type: euclidean_pearson
value: 54.13531251250594
- type: euclidean_spearman
value: 61.20287919055926
- type: main_score
value: 61.21881191987154
- type: manhattan_pearson
value: 54.60474684752885
- type: manhattan_spearman
value: 61.45150178016683
- type: pearson
value: 52.70294625001791
- type: spearman
value: 61.21881191987154
task:
type: STS
license: apache-2.0
language:
- ar
- en
SILMA STS Arabic Embedding Model 0.1
This is a sentence-transformers model finetuned from silma-ai/silma-embeddding-matryoshka-0.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: aubmindlab/bert-base-arabertv02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then load the model
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
Samples
[+] Short Sentence Similarity
Arabic
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
English
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
[+] Long Sentence Similarity
Arabic
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
English
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
[+] Question to Paragraph Matching
Arabic
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
English
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
[+] Message to Intent-Name Mapping
Arabic
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
English
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======
Evaluation
Metrics
Semantic Similarity
- Dataset:
MTEB STS17 (ar-ar)
source - Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8515 |
spearman_cosine | 0.8559 |
pearson_manhattan | 0.8220 |
spearman_manhattan | 0.8397 |
pearson_euclidean | 0.8231 |
spearman_euclidean | 0.8444 |
pearson_dot | 0.8515 |
spearman_dot | 0.8557 |
Training Details
This model was fine-tuned via 2 phases:
Phase 1:
In phase 1
, we curated a dataset silma-ai/silma-arabic-triplets-dataset-v1.0 which
contains more than 2.25M
records of (anchor, positive and negative) Arabic/English samples.
Only the first 600
samples were taken to be the eval
dataset, while the rest were used for fine-tuning.
Phase 1
produces a finetuned Matryoshka
model based on aubmindlab/bert-base-arabertv02 with the following hyperparameters:
per_device_train_batch_size
: 250per_device_eval_batch_size
: 10learning_rate
: 1e-05num_train_epochs
: 3bf16
: Truedataloader_drop_last
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
Phase 2:
In phase 2
, we curated a dataset silma-ai/silma-arabic-english-sts-dataset-v1.0 which
contains more than 30k
records of (sentence1, sentence2 and similarity-score) Arabic/English samples.
Only the first 100
samples were taken to be the eval
dataset, while the rest was used for fine-tuning.
Phase 2
produces a finetuned STS
model based on the model from phase 1
, with the following hyperparameters:
eval_strategy
: stepsper_device_train_batch_size
: 250per_device_eval_batch_size
: 10learning_rate
: 1e-06num_train_epochs
: 10bf16
: Truedataloader_drop_last
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation:
BibTeX:
@misc{silma2024embedding,
author = {Abu Bakr Soliman, Karim Ouda, SILMA AI},
title = {SILMA Embedding STS 0.1},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-sts-0.1}},
}
APA:
Abu Bakr Soliman, Karim Ouda, SILMA AI. (2024). SILMA Embedding STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-sts-0.1