File size: 26,080 Bytes
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8227d44
06bd202
8227d44
06bd202
8227d44
 
 
 
57d0734
8227d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06bd202
8227d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d0734
 
 
 
 
06bd202
8227d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ede35
 
 
 
06bd202
 
c4aa8ea
06bd202
 
 
 
 
 
 
35ede35
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
35ede35
 
06bd202
 
35ede35
06bd202
 
35ede35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd63b2
35ede35
dbd63b2
35ede35
 
 
 
 
 
 
 
 
dbd63b2
 
35ede35
 
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d0734
06bd202
 
 
 
57d0734
 
 
 
 
 
 
 
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a61a78e
35ede35
 
 
 
 
869356e
35ede35
 
06bd202
 
 
35ede35
 
06bd202
 
 
 
 
869356e
35ede35
 
 
 
 
 
 
 
869356e
06bd202
 
 
 
 
 
 
 
 
 
35ede35
869356e
35ede35
06bd202
 
 
 
 
 
 
 
 
 
 
 
0eb85c3
 
 
 
06bd202
0eb85c3
67b5d22
 
0eb85c3
 
 
06bd202
 
 
0eb85c3
 
 
67b5d22
0eb85c3
 
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
---
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
- mteb
model-index:
- name: silma-ai/silma-embeddding-sts-0.1
  results:
  - dataset:
      config: ar
      name: MTEB MassiveIntentClassification (ar)
      revision: 4672e20407010da34463acc759c162ca9734bca6
      split: test
      type: mteb/amazon_massive_intent
    metrics:
    - type: accuracy
      value: 56.489576328177534
    - type: f1
      value: 54.0532701115665
    - type: f1_weighted
      value: 56.74231335142343
    - type: main_score
      value: 56.489576328177534
    task:
      type: Classification
  - dataset:
      config: en
      name: MTEB MassiveIntentClassification (en)
      revision: 4672e20407010da34463acc759c162ca9734bca6
      split: test
      type: mteb/amazon_massive_intent
    metrics:
    - type: accuracy
      value: 48.78278412911903
    - type: f1
      value: 47.56043284146044
    - type: f1_weighted
      value: 48.98016672316552
    - type: main_score
      value: 48.78278412911903
    task:
      type: Classification
  - dataset:
      config: ar
      name: MTEB MassiveIntentClassification (ar)
      revision: 4672e20407010da34463acc759c162ca9734bca6
      split: validation
      type: mteb/amazon_massive_intent
    metrics:
    - type: accuracy
      value: 56.768322675848495
    - type: f1
      value: 53.963930379828895
    - type: f1_weighted
      value: 56.745501043116796
    - type: main_score
      value: 56.768322675848495
    task:
      type: Classification
  - dataset:
      config: en
      name: MTEB MassiveIntentClassification (en)
      revision: 4672e20407010da34463acc759c162ca9734bca6
      split: validation
      type: mteb/amazon_massive_intent
    metrics:
    - type: accuracy
      value: 49.54254795868175
    - type: f1
      value: 48.048926632026195
    - type: f1_weighted
      value: 49.60112881916927
    - type: main_score
      value: 49.54254795868175
    task:
      type: Classification
  - dataset:
      config: ar
      name: MTEB MassiveScenarioClassification (ar)
      revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
      split: test
      type: mteb/amazon_massive_scenario
    metrics:
    - type: accuracy
      value: 62.76395427034298
    - type: f1
      value: 62.795517645393474
    - type: f1_weighted
      value: 61.993985553919295
    - type: main_score
      value: 62.76395427034298
    task:
      type: Classification
  - dataset:
      config: en
      name: MTEB MassiveScenarioClassification (en)
      revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
      split: test
      type: mteb/amazon_massive_scenario
    metrics:
    - type: accuracy
      value: 55.457296570275716
    - type: f1
      value: 53.04898507492993
    - type: f1_weighted
      value: 55.69280690585543
    - type: main_score
      value: 55.457296570275716
    task:
      type: Classification
  - dataset:
      config: ar
      name: MTEB MassiveScenarioClassification (ar)
      revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
      split: validation
      type: mteb/amazon_massive_scenario
    metrics:
    - type: accuracy
      value: 61.76586325627152
    - type: f1
      value: 62.096444561700956
    - type: f1_weighted
      value: 61.253818773337635
    - type: main_score
      value: 61.76586325627152
    task:
      type: Classification
  - dataset:
      config: en
      name: MTEB MassiveScenarioClassification (en)
      revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
      split: validation
      type: mteb/amazon_massive_scenario
    metrics:
    - type: accuracy
      value: 55.248401377274966
    - type: f1
      value: 53.5659818815448
    - type: f1_weighted
      value: 55.392941321965914
    - type: main_score
      value: 55.248401377274966
    task:
      type: Classification
  - dataset:
      config: en-ar
      name: MTEB STS17 (en-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 49.60250026530193
    - type: cosine_spearman
      value: 47.702406527153165
    - type: euclidean_pearson
      value: 44.81740010078862
    - type: euclidean_spearman
      value: 42.831111242971396
    - type: main_score
      value: 47.702406527153165
    - type: manhattan_pearson
      value: 46.340186748112124
    - type: manhattan_spearman
      value: 44.689680009909175
    - type: pearson
      value: 49.60250612700404
    - type: spearman
      value: 47.702406527153165
    task:
      type: STS
  - dataset:
      config: en-en
      name: MTEB STS17 (en-en)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 80.50355999312305
    - type: cosine_spearman
      value: 80.05684742492551
    - type: euclidean_pearson
      value: 79.79426226586054
    - type: euclidean_spearman
      value: 78.62531622907113
    - type: main_score
      value: 80.05684742492551
    - type: manhattan_pearson
      value: 79.69928765568616
    - type: manhattan_spearman
      value: 78.57030908261245
    - type: pearson
      value: 80.50356022284683
    - type: spearman
      value: 80.05684742492551
    task:
      type: STS
  - dataset:
      config: es-en
      name: MTEB STS17 (es-en)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 21.624383947189354
    - type: cosine_spearman
      value: 21.4038834628452
    - type: euclidean_pearson
      value: 7.184950714569936
    - type: euclidean_spearman
      value: 3.4762228403044304
    - type: main_score
      value: 21.4038834628452
    - type: manhattan_pearson
      value: 6.551289317075073
    - type: manhattan_spearman
      value: 2.286368561838714
    - type: pearson
      value: 21.624390367032202
    - type: spearman
      value: 21.4038834628452
    task:
      type: STS
  - dataset:
      config: en-de
      name: MTEB STS17 (en-de)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 31.03301067892329
    - type: cosine_spearman
      value: 31.85713324783654
    - type: euclidean_pearson
      value: 21.63310145118274
    - type: euclidean_spearman
      value: 22.456677151668814
    - type: main_score
      value: 31.85713324783654
    - type: manhattan_pearson
      value: 21.67370664986112
    - type: manhattan_spearman
      value: 21.598819368637155
    - type: pearson
      value: 31.03301931810337
    - type: spearman
      value: 31.85713324783654
    task:
      type: STS
  - dataset:
      config: fr-en
      name: MTEB STS17 (fr-en)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 30.07580974074585
    - type: cosine_spearman
      value: 30.070765595685838
    - type: euclidean_pearson
      value: 17.235942672907232
    - type: euclidean_spearman
      value: 16.010962024640964
    - type: main_score
      value: 30.070765595685838
    - type: manhattan_pearson
      value: 16.98929367890981
    - type: manhattan_spearman
      value: 15.865314171439055
    - type: pearson
      value: 30.075805759312956
    - type: spearman
      value: 30.070765595685838
    task:
      type: STS
  - dataset:
      config: nl-en
      name: MTEB STS17 (nl-en)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 38.5738832598024
    - type: cosine_spearman
      value: 36.23552528353376
    - type: euclidean_pearson
      value: 28.920909050416814
    - type: euclidean_spearman
      value: 26.824767359797256
    - type: main_score
      value: 36.23552528353376
    - type: manhattan_pearson
      value: 28.449235903219787
    - type: manhattan_spearman
      value: 26.149497938525712
    - type: pearson
      value: 38.57388759602166
    - type: spearman
      value: 36.23552528353376
    task:
      type: STS
  - dataset:
      config: it-en
      name: MTEB STS17 (it-en)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 28.440771017135734
    - type: cosine_spearman
      value: 23.328373210539134
    - type: euclidean_pearson
      value: 14.616541134326836
    - type: euclidean_spearman
      value: 7.785452426485771
    - type: main_score
      value: 23.328373210539134
    - type: manhattan_pearson
      value: 16.35791121049381
    - type: manhattan_spearman
      value: 10.350376853181583
    - type: pearson
      value: 28.440782342934394
    - type: spearman
      value: 23.328373210539134
    task:
      type: STS
  - dataset:
      config: en-tr
      name: MTEB STS17 (en-tr)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 10.058384831429683
    - type: cosine_spearman
      value: 9.208230020320498
    - type: euclidean_pearson
      value: -3.778073300045484
    - type: euclidean_spearman
      value: -5.168172155878574
    - type: main_score
      value: 9.208230020320498
    - type: manhattan_pearson
      value: -5.081387114365387
    - type: manhattan_spearman
      value: -5.190932828652431
    - type: pearson
      value: 10.058387061356784
    - type: spearman
      value: 9.208230020320498
    task:
      type: STS
  - dataset:
      config: ar-ar
      name: MTEB STS17 (ar-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 85.15496368852482
    - type: cosine_spearman
      value: 85.58624740720275
    - type: euclidean_pearson
      value: 82.31207769687893
    - type: euclidean_spearman
      value: 84.44298391864797
    - type: main_score
      value: 85.58624740720275
    - type: manhattan_pearson
      value: 82.19636675129995
    - type: manhattan_spearman
      value: 83.97030581469602
    - type: pearson
      value: 85.15496353205859
    - type: spearman
      value: 85.59382070976062
    task:
      type: STS
  - dataset:
      config: es-en
      name: MTEB STS22.v2 (es-en)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 44.24743366469854
    - type: cosine_spearman
      value: 50.28917533427211
    - type: euclidean_pearson
      value: 45.87986269990654
    - type: euclidean_spearman
      value: 51.891514435608855
    - type: main_score
      value: 50.28917533427211
    - type: manhattan_pearson
      value: 45.45542397032592
    - type: manhattan_spearman
      value: 52.411033818833666
    - type: pearson
      value: 44.24743853113377
    - type: spearman
      value: 50.28917533427211
    task:
      type: STS
  - dataset:
      config: zh-en
      name: MTEB STS22.v2 (zh-en)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 27.73878924884296
    - type: cosine_spearman
      value: 22.44663617360493
    - type: euclidean_pearson
      value: 22.868571735387977
    - type: euclidean_spearman
      value: 18.017657427593637
    - type: main_score
      value: 22.44663617360493
    - type: manhattan_pearson
      value: 24.20368152236799
    - type: manhattan_spearman
      value: 19.341058710109657
    - type: pearson
      value: 27.738791387167687
    - type: spearman
      value: 22.44663617360493
    task:
      type: STS
  - dataset:
      config: de-en
      name: MTEB STS22.v2 (de-en)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 28.905819837460527
    - type: cosine_spearman
      value: 32.52679512081778
    - type: euclidean_pearson
      value: 28.61574417382465
    - type: euclidean_spearman
      value: 35.447663167023094
    - type: main_score
      value: 32.52679512081778
    - type: manhattan_pearson
      value: 28.736369410178426
    - type: manhattan_spearman
      value: 35.158643077723944
    - type: pearson
      value: 28.90580871894244
    - type: spearman
      value: 32.52679512081778
    task:
      type: STS
  - dataset:
      config: pl-en
      name: MTEB STS22.v2 (pl-en)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 48.20842591896265
    - type: cosine_spearman
      value: 44.838254673346626
    - type: euclidean_pearson
      value: 51.55940058938421
    - type: euclidean_spearman
      value: 45.912821863788785
    - type: main_score
      value: 44.838254673346626
    - type: manhattan_pearson
      value: 52.13078297712538
    - type: manhattan_spearman
      value: 47.402814514453425
    - type: pearson
      value: 48.20843799095813
    - type: spearman
      value: 44.838254673346626
    task:
      type: STS
  - dataset:
      config: en
      name: MTEB STS22.v2 (en)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 56.896647953120414
    - type: cosine_spearman
      value: 60.96741836410487
    - type: euclidean_pearson
      value: 55.90453382184861
    - type: euclidean_spearman
      value: 60.273680095845705
    - type: main_score
      value: 60.96741836410487
    - type: manhattan_pearson
      value: 55.87830113983942
    - type: manhattan_spearman
      value: 59.94276270978964
    - type: pearson
      value: 56.89664991046338
    - type: spearman
      value: 60.96741836410487
    task:
      type: STS
  - dataset:
      config: ar
      name: MTEB STS22.v2 (ar)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 52.70294726367241
    - type: cosine_spearman
      value: 61.21881191987154
    - type: euclidean_pearson
      value: 54.13531251250594
    - type: euclidean_spearman
      value: 61.20287919055926
    - type: main_score
      value: 61.21881191987154
    - type: manhattan_pearson
      value: 54.60474684752885
    - type: manhattan_spearman
      value: 61.45150178016683
    - type: pearson
      value: 52.70294625001791
    - type: spearman
      value: 61.21881191987154
    task:
      type: STS
license: apache-2.0
language:
- ar
- en
---

# SILMA STS Arabic Embedding Model 0.1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then load the model

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
```

### Samples

#### [+] Short Sentence Similarity

**Arabic**
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
```

**English**
```python
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
```

#### [+] Long Sentence Similarity

**Arabic**
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
```

**English**
```python
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
```

#### [+] Question to Paragraph Matching

**Arabic**
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
```

**English**
```python
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
```

#### [+] Message to Intent-Name Mapping

**Arabic**
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
```

**English**
```python
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `MTEB STS17 (ar-ar)` [source](https://huggingface.co/datasets/mteb/sts17-crosslingual-sts/viewer/ar-ar)
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8515     |
| **spearman_cosine** | **0.8559** |
| pearson_manhattan   | 0.8220     |
| spearman_manhattan  | 0.8397     |
| pearson_euclidean   | 0.8231     |
| spearman_euclidean  | 0.8444     |
| pearson_dot         | 0.8515     |
| spearman_dot        | 0.8557     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

This model was fine-tuned via 2 phases:

### Phase 1:

In phase `1`, we curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples. 
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.

Phase `1` produces a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:

- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**


### Phase 2:

In phase `2`, we curated a dataset [silma-ai/silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) which
contains more than `30k` records of (sentence1, sentence2 and similarity-score) Arabic/English samples. 
Only the first `100` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning. 

Phase `2` produces a finetuned `STS` model based on the model from phase `1`, with the following hyperparameters:

- `eval_strategy`: steps
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-06
- `num_train_epochs`: 10
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py)**


</details>

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1

### Citation:

#### BibTeX:

```bibtex
@misc{silma2024embedding,
  author = {Abu Bakr Soliman, Karim Ouda, SILMA AI},
  title = {SILMA Embedding STS 0.1},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-sts-0.1}},
}
```

#### APA:

```apa
Abu Bakr Soliman, Karim Ouda, SILMA AI. (2024). SILMA Embedding STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-sts-0.1
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->