Update Eval Results
Browse files
README.md
CHANGED
@@ -10,8 +10,6 @@ metrics:
|
|
10 |
- spearman_euclidean
|
11 |
- pearson_dot
|
12 |
- spearman_dot
|
13 |
-
- pearson_max
|
14 |
-
- spearman_max
|
15 |
pipeline_tag: sentence-similarity
|
16 |
tags:
|
17 |
- sentence-transformers
|
@@ -26,76 +24,70 @@ model-index:
|
|
26 |
type: semantic-similarity
|
27 |
name: Semantic Similarity
|
28 |
dataset:
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
metrics:
|
32 |
- type: pearson_cosine
|
33 |
-
value: 0.
|
34 |
name: Pearson Cosine
|
35 |
- type: spearman_cosine
|
36 |
-
value: 0.
|
37 |
name: Spearman Cosine
|
38 |
- type: pearson_manhattan
|
39 |
-
value: 0.
|
40 |
name: Pearson Manhattan
|
41 |
- type: spearman_manhattan
|
42 |
-
value: 0.
|
43 |
name: Spearman Manhattan
|
44 |
- type: pearson_euclidean
|
45 |
-
value: 0.
|
46 |
name: Pearson Euclidean
|
47 |
- type: spearman_euclidean
|
48 |
-
value: 0.
|
49 |
name: Spearman Euclidean
|
50 |
- type: pearson_dot
|
51 |
-
value: 0.
|
52 |
name: Pearson Dot
|
53 |
- type: spearman_dot
|
54 |
-
value: 0.
|
55 |
name: Spearman Dot
|
56 |
-
- type: pearson_max
|
57 |
-
value: 0.8509127994264242
|
58 |
-
name: Pearson Max
|
59 |
-
- type: spearman_max
|
60 |
-
value: 0.8559811107036664
|
61 |
-
name: Spearman Max
|
62 |
- task:
|
63 |
type: semantic-similarity
|
64 |
name: Semantic Similarity
|
65 |
dataset:
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
metrics:
|
69 |
- type: pearson_cosine
|
70 |
-
value: 0.
|
71 |
name: Pearson Cosine
|
72 |
- type: spearman_cosine
|
73 |
-
value: 0.
|
74 |
name: Spearman Cosine
|
75 |
- type: pearson_manhattan
|
76 |
-
value: 0.
|
77 |
name: Pearson Manhattan
|
78 |
- type: spearman_manhattan
|
79 |
-
value: 0.
|
80 |
name: Spearman Manhattan
|
81 |
- type: pearson_euclidean
|
82 |
-
value: 0.
|
83 |
name: Pearson Euclidean
|
84 |
- type: spearman_euclidean
|
85 |
-
value: 0.
|
86 |
name: Spearman Euclidean
|
87 |
- type: pearson_dot
|
88 |
-
value: 0.
|
89 |
name: Pearson Dot
|
90 |
- type: spearman_dot
|
91 |
-
value: 0.
|
92 |
name: Spearman Dot
|
93 |
-
- type: pearson_max
|
94 |
-
value: 0.8498025312190702
|
95 |
-
name: Pearson Max
|
96 |
-
- type: spearman_max
|
97 |
-
value: 0.8530609768738506
|
98 |
-
name: Spearman Max
|
99 |
license: apache-2.0
|
100 |
language:
|
101 |
- ar
|
@@ -310,38 +302,19 @@ You can finetune this model on your own dataset.
|
|
310 |
### Metrics
|
311 |
|
312 |
#### Semantic Similarity
|
313 |
-
* Dataset: `sts-
|
314 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
315 |
|
316 |
| Metric | Value |
|
317 |
|:--------------------|:-----------|
|
318 |
-
| pearson_cosine | 0.
|
319 |
-
| **spearman_cosine** | **0.
|
320 |
-
| pearson_manhattan | 0.
|
321 |
-
| spearman_manhattan | 0.
|
322 |
-
| pearson_euclidean | 0.
|
323 |
-
| spearman_euclidean | 0.
|
324 |
-
| pearson_dot | 0.
|
325 |
-
| spearman_dot | 0.
|
326 |
-
| pearson_max | 0.8509 |
|
327 |
-
| spearman_max | 0.856 |
|
328 |
-
|
329 |
-
#### Semantic Similarity
|
330 |
-
* Dataset: `sts-dev-256`
|
331 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
332 |
-
|
333 |
-
| Metric | Value |
|
334 |
-
|:--------------------|:-----------|
|
335 |
-
| pearson_cosine | 0.8498 |
|
336 |
-
| **spearman_cosine** | **0.8531** |
|
337 |
-
| pearson_manhattan | 0.8182 |
|
338 |
-
| spearman_manhattan | 0.8329 |
|
339 |
-
| pearson_euclidean | 0.8194 |
|
340 |
-
| spearman_euclidean | 0.8339 |
|
341 |
-
| pearson_dot | 0.8396 |
|
342 |
-
| spearman_dot | 0.8484 |
|
343 |
-
| pearson_max | 0.8498 |
|
344 |
-
| spearman_max | 0.8531 |
|
345 |
|
346 |
<!--
|
347 |
## Bias, Risks and Limitations
|
@@ -402,38 +375,6 @@ Phase `2` produces a finetuned `STS` model based on the model from phase `1`, wi
|
|
402 |
|
403 |
</details>
|
404 |
|
405 |
-
### Training Logs (Phase 2)
|
406 |
-
| Epoch | Step | Training Loss | Validation Loss | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine |
|
407 |
-
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
|
408 |
-
| 0.3650 | 50 | 0.0395 | 0.0424 | 0.8486 | 0.8487 |
|
409 |
-
| 0.7299 | 100 | 0.031 | 0.0427 | 0.8493 | 0.8495 |
|
410 |
-
| 1.0949 | 150 | 0.0344 | 0.0430 | 0.8496 | 0.8496 |
|
411 |
-
| 1.4599 | 200 | 0.0313 | 0.0427 | 0.8506 | 0.8504 |
|
412 |
-
| 1.8248 | 250 | 0.0267 | 0.0428 | 0.8504 | 0.8506 |
|
413 |
-
| 2.1898 | 300 | 0.0309 | 0.0429 | 0.8516 | 0.8515 |
|
414 |
-
| 2.5547 | 350 | 0.0276 | 0.0425 | 0.8531 | 0.8521 |
|
415 |
-
| 2.9197 | 400 | 0.028 | 0.0426 | 0.8530 | 0.8515 |
|
416 |
-
| 3.2847 | 450 | 0.0281 | 0.0425 | 0.8539 | 0.8521 |
|
417 |
-
| 3.6496 | 500 | 0.0248 | 0.0425 | 0.8542 | 0.8523 |
|
418 |
-
| 4.0146 | 550 | 0.0302 | 0.0424 | 0.8541 | 0.8520 |
|
419 |
-
| 4.3796 | 600 | 0.0261 | 0.0421 | 0.8545 | 0.8523 |
|
420 |
-
| 4.7445 | 650 | 0.0233 | 0.0420 | 0.8544 | 0.8522 |
|
421 |
-
| 5.1095 | 700 | 0.0281 | 0.0419 | 0.8547 | 0.8528 |
|
422 |
-
| 5.4745 | 750 | 0.0257 | 0.0419 | 0.8546 | 0.8531 |
|
423 |
-
| 5.8394 | 800 | 0.0235 | 0.0418 | 0.8546 | 0.8527 |
|
424 |
-
| 6.2044 | 850 | 0.0268 | 0.0418 | 0.8551 | 0.8529 |
|
425 |
-
| 6.5693 | 900 | 0.0238 | 0.0416 | 0.8552 | 0.8526 |
|
426 |
-
| 6.9343 | 950 | 0.0255 | 0.0416 | 0.8549 | 0.8526 |
|
427 |
-
| 7.2993 | 1000 | 0.0253 | 0.0416 | 0.8548 | 0.8528 |
|
428 |
-
| 7.6642 | 1050 | 0.0225 | 0.0415 | 0.8550 | 0.8525 |
|
429 |
-
| 8.0292 | 1100 | 0.0276 | 0.0414 | 0.8550 | 0.8528 |
|
430 |
-
| 8.3942 | 1150 | 0.0244 | 0.0415 | 0.8550 | 0.8533 |
|
431 |
-
| 8.7591 | 1200 | 0.0218 | 0.0414 | 0.8551 | 0.8529 |
|
432 |
-
| 9.1241 | 1250 | 0.0263 | 0.0414 | 0.8550 | 0.8531 |
|
433 |
-
| 9.4891 | 1300 | 0.0241 | 0.0414 | 0.8552 | 0.8533 |
|
434 |
-
| 9.8540 | 1350 | 0.0227 | 0.0415 | 0.8549 | 0.8531 |
|
435 |
-
|
436 |
-
|
437 |
### Framework Versions
|
438 |
- Python: 3.10.14
|
439 |
- Sentence Transformers: 3.2.0
|
@@ -443,11 +384,7 @@ Phase `2` produces a finetuned `STS` model based on the model from phase `1`, wi
|
|
443 |
- Datasets: 3.0.1
|
444 |
- Tokenizers: 0.20.1
|
445 |
|
446 |
-
|
447 |
-
|
448 |
-
### BibTeX
|
449 |
-
|
450 |
-
#### Sentence Transformers
|
451 |
```bibtex
|
452 |
@inproceedings{reimers-2019-sentence-bert,
|
453 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
|
10 |
- spearman_euclidean
|
11 |
- pearson_dot
|
12 |
- spearman_dot
|
|
|
|
|
13 |
pipeline_tag: sentence-similarity
|
14 |
tags:
|
15 |
- sentence-transformers
|
|
|
24 |
type: semantic-similarity
|
25 |
name: Semantic Similarity
|
26 |
dataset:
|
27 |
+
config: ar-ar
|
28 |
+
name: MTEB STS17 (ar-ar)
|
29 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
30 |
+
split: test
|
31 |
+
type: mteb/sts17-crosslingual-sts
|
32 |
metrics:
|
33 |
- type: pearson_cosine
|
34 |
+
value: 0.8515496450525244
|
35 |
name: Pearson Cosine
|
36 |
- type: spearman_cosine
|
37 |
+
value: 0.8558624740720275
|
38 |
name: Spearman Cosine
|
39 |
- type: pearson_manhattan
|
40 |
+
value: 0.821963706969713
|
41 |
name: Pearson Manhattan
|
42 |
- type: spearman_manhattan
|
43 |
+
value: 0.8396900657477299
|
44 |
name: Spearman Manhattan
|
45 |
- type: pearson_euclidean
|
46 |
+
value: 0.8231208177674895
|
47 |
name: Pearson Euclidean
|
48 |
- type: spearman_euclidean
|
49 |
+
value: 0.8444168331737782
|
50 |
name: Spearman Euclidean
|
51 |
- type: pearson_dot
|
52 |
+
value: 0.8515496381581389
|
53 |
name: Pearson Dot
|
54 |
- type: spearman_dot
|
55 |
+
value: 0.8557531503465841
|
56 |
name: Spearman Dot
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
- task:
|
58 |
type: semantic-similarity
|
59 |
name: Semantic Similarity
|
60 |
dataset:
|
61 |
+
config: en-ar
|
62 |
+
name: MTEB STS17 (en-ar)
|
63 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
64 |
+
split: test
|
65 |
+
type: mteb/sts17-crosslingual-sts
|
66 |
metrics:
|
67 |
- type: pearson_cosine
|
68 |
+
value: 0.4960250395119053
|
69 |
name: Pearson Cosine
|
70 |
- type: spearman_cosine
|
71 |
+
value: 0.4770240652715316
|
72 |
name: Spearman Cosine
|
73 |
- type: pearson_manhattan
|
74 |
+
value: 0.463401831917928
|
75 |
name: Pearson Manhattan
|
76 |
- type: spearman_manhattan
|
77 |
+
value: 0.4468968000990917
|
78 |
name: Spearman Manhattan
|
79 |
- type: pearson_euclidean
|
80 |
+
value: 0.4481739880481376
|
81 |
name: Pearson Euclidean
|
82 |
- type: spearman_euclidean
|
83 |
+
value: 0.428311112429714
|
84 |
name: Spearman Euclidean
|
85 |
- type: pearson_dot
|
86 |
+
value: 0.49602504450181617
|
87 |
name: Pearson Dot
|
88 |
- type: spearman_dot
|
89 |
+
value: 0.4770240652715316
|
90 |
name: Spearman Dot
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
license: apache-2.0
|
92 |
language:
|
93 |
- ar
|
|
|
302 |
### Metrics
|
303 |
|
304 |
#### Semantic Similarity
|
305 |
+
* Dataset: `MTEB STS17 (ar-ar)` [source](https://huggingface.co/datasets/mteb/sts17-crosslingual-sts/viewer/ar-ar)
|
306 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
307 |
|
308 |
| Metric | Value |
|
309 |
|:--------------------|:-----------|
|
310 |
+
| pearson_cosine | 0.8515 |
|
311 |
+
| **spearman_cosine** | **0.8559** |
|
312 |
+
| pearson_manhattan | 0.8220 |
|
313 |
+
| spearman_manhattan | 0.8397 |
|
314 |
+
| pearson_euclidean | 0.8231 |
|
315 |
+
| spearman_euclidean | 0.8444 |
|
316 |
+
| pearson_dot | 0.8515 |
|
317 |
+
| spearman_dot | 0.8557 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
<!--
|
320 |
## Bias, Risks and Limitations
|
|
|
375 |
|
376 |
</details>
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
### Framework Versions
|
379 |
- Python: 3.10.14
|
380 |
- Sentence Transformers: 3.2.0
|
|
|
384 |
- Datasets: 3.0.1
|
385 |
- Tokenizers: 0.20.1
|
386 |
|
387 |
+
#### Sentence Transformers Citation
|
|
|
|
|
|
|
|
|
388 |
```bibtex
|
389 |
@inproceedings{reimers-2019-sentence-bert,
|
390 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|