|
--- |
|
tags: |
|
- CartPole-v1 |
|
- ppo |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- custom-implementation |
|
- deep-rl-course |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: CartPole-v1 |
|
type: CartPole-v1 |
|
metrics: |
|
- type: mean_reward |
|
value: 500.00 +/- 0.00 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# PPO Agent Playing CartPole-v1 |
|
|
|
This is a trained model of a PPO agent playing CartPole-v1. |
|
|
|
# Hyperparameters |
|
```python |
|
{'env_id': 'CartPole-v1' |
|
'seed': 1 |
|
'num_envs': 8 |
|
'pi_hidden_layers': (64 |
|
64) |
|
'v_hidden_layers': (64 |
|
64) |
|
'learning_rate': 0.001 |
|
'anneal_lr': True |
|
'total_timesteps': 100000 |
|
'num_steps': 32 |
|
'gamma': 0.98 |
|
'gae_lambda': 0.8 |
|
'num_minibatches': 1 |
|
'num_epochs': 20 |
|
'norm_advantage': True |
|
'clip_coef': 0.2 |
|
'clip_vloss': True |
|
'vf_coef': 0.5 |
|
'ent_coef': 0.0 |
|
'max_grad_norm': 0.5 |
|
'target_kl': None} |
|
``` |
|
|