|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-hau-finetuned-augmentation-LUNAR |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-hau-finetuned-augmentation-LUNAR |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3543 |
|
- F1: 0.6620 |
|
- Roc Auc: 0.7803 |
|
- Accuracy: 0.4983 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.4603 | 1.0 | 144 | 0.4533 | 0.0933 | 0.5307 | 0.1916 | |
|
| 0.4368 | 2.0 | 288 | 0.4219 | 0.1953 | 0.5812 | 0.2003 | |
|
| 0.3826 | 3.0 | 432 | 0.3880 | 0.3288 | 0.6189 | 0.2787 | |
|
| 0.3535 | 4.0 | 576 | 0.3562 | 0.5208 | 0.6918 | 0.3833 | |
|
| 0.3018 | 5.0 | 720 | 0.3511 | 0.5697 | 0.7308 | 0.4007 | |
|
| 0.2543 | 6.0 | 864 | 0.3593 | 0.6030 | 0.7492 | 0.4338 | |
|
| 0.2549 | 7.0 | 1008 | 0.3463 | 0.6063 | 0.7436 | 0.4460 | |
|
| 0.2183 | 8.0 | 1152 | 0.3425 | 0.6112 | 0.7484 | 0.4477 | |
|
| 0.195 | 9.0 | 1296 | 0.3502 | 0.6004 | 0.7432 | 0.4355 | |
|
| 0.1842 | 10.0 | 1440 | 0.3358 | 0.6223 | 0.7506 | 0.4686 | |
|
| 0.151 | 11.0 | 1584 | 0.3451 | 0.6245 | 0.7578 | 0.4669 | |
|
| 0.1385 | 12.0 | 1728 | 0.3383 | 0.6313 | 0.7584 | 0.4669 | |
|
| 0.1286 | 13.0 | 1872 | 0.3492 | 0.6445 | 0.7692 | 0.4739 | |
|
| 0.115 | 14.0 | 2016 | 0.3502 | 0.6553 | 0.7753 | 0.4913 | |
|
| 0.1031 | 15.0 | 2160 | 0.3516 | 0.6529 | 0.7771 | 0.4826 | |
|
| 0.1068 | 16.0 | 2304 | 0.3529 | 0.6448 | 0.7685 | 0.4808 | |
|
| 0.0818 | 17.0 | 2448 | 0.3522 | 0.6542 | 0.7741 | 0.4895 | |
|
| 0.0906 | 18.0 | 2592 | 0.3543 | 0.6620 | 0.7803 | 0.4983 | |
|
| 0.0878 | 19.0 | 2736 | 0.3541 | 0.6595 | 0.7780 | 0.4948 | |
|
| 0.0872 | 20.0 | 2880 | 0.3545 | 0.6584 | 0.7777 | 0.4948 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|