File size: 3,129 Bytes
6ee5f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36d990
 
 
 
6ee5f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: xlm-roberta-base-hau-finetuned-augmentation-LUNAR
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-hau-finetuned-augmentation-LUNAR

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3543
- F1: 0.6620
- Roc Auc: 0.7803
- Accuracy: 0.4983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.4603        | 1.0   | 144  | 0.4533          | 0.0933 | 0.5307  | 0.1916   |
| 0.4368        | 2.0   | 288  | 0.4219          | 0.1953 | 0.5812  | 0.2003   |
| 0.3826        | 3.0   | 432  | 0.3880          | 0.3288 | 0.6189  | 0.2787   |
| 0.3535        | 4.0   | 576  | 0.3562          | 0.5208 | 0.6918  | 0.3833   |
| 0.3018        | 5.0   | 720  | 0.3511          | 0.5697 | 0.7308  | 0.4007   |
| 0.2543        | 6.0   | 864  | 0.3593          | 0.6030 | 0.7492  | 0.4338   |
| 0.2549        | 7.0   | 1008 | 0.3463          | 0.6063 | 0.7436  | 0.4460   |
| 0.2183        | 8.0   | 1152 | 0.3425          | 0.6112 | 0.7484  | 0.4477   |
| 0.195         | 9.0   | 1296 | 0.3502          | 0.6004 | 0.7432  | 0.4355   |
| 0.1842        | 10.0  | 1440 | 0.3358          | 0.6223 | 0.7506  | 0.4686   |
| 0.151         | 11.0  | 1584 | 0.3451          | 0.6245 | 0.7578  | 0.4669   |
| 0.1385        | 12.0  | 1728 | 0.3383          | 0.6313 | 0.7584  | 0.4669   |
| 0.1286        | 13.0  | 1872 | 0.3492          | 0.6445 | 0.7692  | 0.4739   |
| 0.115         | 14.0  | 2016 | 0.3502          | 0.6553 | 0.7753  | 0.4913   |
| 0.1031        | 15.0  | 2160 | 0.3516          | 0.6529 | 0.7771  | 0.4826   |
| 0.1068        | 16.0  | 2304 | 0.3529          | 0.6448 | 0.7685  | 0.4808   |
| 0.0818        | 17.0  | 2448 | 0.3522          | 0.6542 | 0.7741  | 0.4895   |
| 0.0906        | 18.0  | 2592 | 0.3543          | 0.6620 | 0.7803  | 0.4983   |
| 0.0878        | 19.0  | 2736 | 0.3541          | 0.6595 | 0.7780  | 0.4948   |
| 0.0872        | 20.0  | 2880 | 0.3545          | 0.6584 | 0.7777  | 0.4948   |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0