sentiment-10Epochs / README.md
sepidmnorozy's picture
update model card README.md
5a618f7
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: sentiment-10Epochs
    results: []

sentiment-10Epochs

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7030
  • Accuracy: 0.8603
  • F1: 0.8585
  • Precision: 0.8699
  • Recall: 0.8473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3645 1.0 7088 0.4315 0.8603 0.8466 0.9386 0.7711
0.374 2.0 14176 0.4015 0.8713 0.8648 0.9105 0.8235
0.3363 3.0 21264 0.4772 0.8705 0.8615 0.9256 0.8057
0.3131 4.0 28352 0.4579 0.8702 0.8650 0.9007 0.8321
0.3097 5.0 35440 0.4160 0.8721 0.8663 0.9069 0.8292
0.2921 6.0 42528 0.4638 0.8673 0.8630 0.8917 0.8362
0.2725 7.0 49616 0.5183 0.8654 0.8602 0.8947 0.8283
0.2481 8.0 56704 0.5846 0.8649 0.8624 0.8787 0.8467
0.192 9.0 63792 0.6481 0.8610 0.8596 0.8680 0.8514
0.1945 10.0 70880 0.7030 0.8603 0.8585 0.8699 0.8473

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0
  • Datasets 2.0.0
  • Tokenizers 0.11.6