File size: 2,320 Bytes
5a618f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentiment-10Epochs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment-10Epochs

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7030
- Accuracy: 0.8603
- F1: 0.8585
- Precision: 0.8699
- Recall: 0.8473

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3645        | 1.0   | 7088  | 0.4315          | 0.8603   | 0.8466 | 0.9386    | 0.7711 |
| 0.374         | 2.0   | 14176 | 0.4015          | 0.8713   | 0.8648 | 0.9105    | 0.8235 |
| 0.3363        | 3.0   | 21264 | 0.4772          | 0.8705   | 0.8615 | 0.9256    | 0.8057 |
| 0.3131        | 4.0   | 28352 | 0.4579          | 0.8702   | 0.8650 | 0.9007    | 0.8321 |
| 0.3097        | 5.0   | 35440 | 0.4160          | 0.8721   | 0.8663 | 0.9069    | 0.8292 |
| 0.2921        | 6.0   | 42528 | 0.4638          | 0.8673   | 0.8630 | 0.8917    | 0.8362 |
| 0.2725        | 7.0   | 49616 | 0.5183          | 0.8654   | 0.8602 | 0.8947    | 0.8283 |
| 0.2481        | 8.0   | 56704 | 0.5846          | 0.8649   | 0.8624 | 0.8787    | 0.8467 |
| 0.192         | 9.0   | 63792 | 0.6481          | 0.8610   | 0.8596 | 0.8680    | 0.8514 |
| 0.1945        | 10.0  | 70880 | 0.7030          | 0.8603   | 0.8585 | 0.8699    | 0.8473 |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0
- Datasets 2.0.0
- Tokenizers 0.11.6