|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: meta-llama/Llama-2-7b-hf |
|
datasets: |
|
- screevoai/abbvie |
|
model-index: |
|
- name: Abbvie-llama2-7b |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: causal-language-modeling |
|
dataset: |
|
name: Abbvie Dataset |
|
type: string |
|
config: None |
|
split: train, validation, test |
|
args: None |
|
metrics: |
|
- name: Training loss |
|
type: None |
|
value: null |
|
--- |
|
|
|
|
|
## Model Details |
|
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the screevoai/abbvie dataset. |
|
|
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.4318 | 7 | 1100 | 1.4409 | |
|
|
|
### Libraries to Install |
|
|
|
- pip install transformers datasets safetensors huggingface-hub accelerator |
|
- pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu |
|
|
|
### Authentication needed before running the script |
|
|
|
Run the following command in the terminal/jupyter_notebook: |
|
|
|
- Terminal: huggingface-cli login |
|
- Jupyter_notebook: |
|
|
|
```python |
|
>>> from huggingface_hub import notebook_login |
|
>>> notebook_login() |
|
``` |
|
|
|
**NOTE:** Copy and Paste the token from your Huggingface Account Settings > Access Tokens > Create a new token / Copy the existing one. |
|
|
|
|
|
### Script |
|
|
|
```python |
|
>>>from datasets import load_dataset |
|
>>>from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
>>> # Load model and Tokenizer |
|
>>> model = AutoModelForCausalLM.from_pretrained("screevoai/abbvie-llama2-7b", device_map = "auto") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("screevoai/abbvie-llama2-7b") |
|
>>> tokenizer.padding_side='right' |
|
>>> tokenizer.pad_token = tokenizer.eos_token |
|
|
|
>>> # Load the dataset |
|
>>> ds = load_dataset("screevoai/abbvie", split="test", use_auth_token=True) |
|
>>> sample_prompt = ds["Prompt"][0] # change the row number for testing different prompts |
|
|
|
>>> # Generate answer to the prompt using the model |
|
>>> encoded_input = tokenizer(sample_prompt, return_tensors="pt", add_special_tokens=True) |
|
>>> model_inputs = encoded_input.to('auto') |
|
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=500, do_sample=True, pad_token_id=tokenizer.eos_token_id) |
|
>>> decoded_output = tokenizer.batch_decode(generated_ids) |
|
|
|
>>> print(decoded_output[0].replace(prompt, "")) |
|
|
|
``` |