metadata
language:
- en
license: apache-2.0
base_model: meta-llama/Llama-2-7b-hf
datasets:
- screevoai/abbvie
model-index:
- name: Abbvie-llama2-7b
results:
- task:
name: Causal Language Modeling
type: causal-language-modeling
dataset:
name: Abbvie Dataset
type: string
config: None
split: train, validation, test
args: None
metrics:
- name: Training loss
type: None
value: null
Model Details
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the screevoai/abbvie dataset.
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4318 | 7 | 1100 | 1.4409 |
Libraries to Install
- pip install transformers datasets safetensors huggingface-hub accelerator
- pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
Authentication needed before running the script
Run the following command in the terminal/jupyter_notebook:
Terminal: huggingface-cli login
Jupyter_notebook:
>>> from huggingface_hub import notebook_login >>> notebook_login()
NOTE: Copy and Paste the token from your Huggingface Account Settings > Access Tokens > Create a new token / Copy the existing one.
Script
>>>from datasets import load_dataset
>>>from transformers import AutoModelForCausalLM, AutoTokenizer
>>> # Load model and Tokenizer
>>> model = AutoModelForCausalLM.from_pretrained("screevoai/abbvie-llama2-7b", device_map = "auto")
>>> tokenizer = AutoTokenizer.from_pretrained("screevoai/abbvie-llama2-7b")
>>> tokenizer.padding_side='right'
>>> tokenizer.pad_token = tokenizer.eos_token
>>> # Load the dataset
>>> ds = load_dataset("screevoai/abbvie", split="test", use_auth_token=True)
>>> sample_prompt = ds["Prompt"][0] # change the row number for testing different prompts
>>> # Generate answer to the prompt using the model
>>> encoded_input = tokenizer(sample_prompt, return_tensors="pt", add_special_tokens=True)
>>> model_inputs = encoded_input.to('auto')
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=500, do_sample=True, pad_token_id=tokenizer.eos_token_id)
>>> decoded_output = tokenizer.batch_decode(generated_ids)
>>> print(decoded_output[0].replace(prompt, ""))