|
--- |
|
license: apache-2.0 |
|
base_model: allenai/led-base-16384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: LED-Base-NSPCC |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LED-Base-NSPCC |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8152 |
|
- Rouge1: 0.4955 |
|
- Rouge2: 0.2131 |
|
- Rougel: 0.2804 |
|
- Rougelsum: 0.2807 |
|
- Gen Len: 267.3511 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| 2.5412 | 0.99 | 47 | 1.9338 | 0.4778 | 0.186 | 0.2638 | 0.2635 | 266.2766 | |
|
| 1.6145 | 1.99 | 94 | 1.8152 | 0.4955 | 0.2131 | 0.2804 | 0.2807 | 267.3511 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|