File size: 1,788 Bytes
ac3043b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: allenai/led-base-16384
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: LED-Base-NSPCC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LED-Base-NSPCC

This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8152
- Rouge1: 0.4955
- Rouge2: 0.2131
- Rougel: 0.2804
- Rougelsum: 0.2807
- Gen Len: 267.3511

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| 2.5412        | 0.99  | 47   | 1.9338          | 0.4778 | 0.186  | 0.2638 | 0.2635    | 266.2766 |
| 1.6145        | 1.99  | 94   | 1.8152          | 0.4955 | 0.2131 | 0.2804 | 0.2807    | 267.3511 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2