salbatarni's picture
End of training
d0bce3a verified
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task4_fold4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_cross_relevance_task4_fold4
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2574
- Qwk: 0.3506
- Mse: 0.2574
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.1111 | 2 | 0.5156 | 0.0454 | 0.5156 |
| No log | 0.2222 | 4 | 0.4059 | 0.0584 | 0.4059 |
| No log | 0.3333 | 6 | 0.3883 | 0.0664 | 0.3883 |
| No log | 0.4444 | 8 | 0.3323 | 0.0300 | 0.3323 |
| No log | 0.5556 | 10 | 0.3166 | 0.0769 | 0.3166 |
| No log | 0.6667 | 12 | 0.3026 | 0.0769 | 0.3026 |
| No log | 0.7778 | 14 | 0.2709 | 0.1111 | 0.2709 |
| No log | 0.8889 | 16 | 0.2522 | 0.2158 | 0.2522 |
| No log | 1.0 | 18 | 0.2404 | 0.3048 | 0.2404 |
| No log | 1.1111 | 20 | 0.2348 | 0.2941 | 0.2348 |
| No log | 1.2222 | 22 | 0.2318 | 0.3163 | 0.2318 |
| No log | 1.3333 | 24 | 0.2322 | 0.3054 | 0.2322 |
| No log | 1.4444 | 26 | 0.2311 | 0.2906 | 0.2311 |
| No log | 1.5556 | 28 | 0.2619 | 0.2871 | 0.2619 |
| No log | 1.6667 | 30 | 0.2783 | 0.2455 | 0.2783 |
| No log | 1.7778 | 32 | 0.2675 | 0.3226 | 0.2675 |
| No log | 1.8889 | 34 | 0.2424 | 0.2797 | 0.2424 |
| No log | 2.0 | 36 | 0.2390 | 0.2795 | 0.2390 |
| No log | 2.1111 | 38 | 0.2386 | 0.2863 | 0.2386 |
| No log | 2.2222 | 40 | 0.2432 | 0.3256 | 0.2432 |
| No log | 2.3333 | 42 | 0.2747 | 0.4663 | 0.2747 |
| No log | 2.4444 | 44 | 0.2768 | 0.4585 | 0.2768 |
| No log | 2.5556 | 46 | 0.2536 | 0.3640 | 0.2536 |
| No log | 2.6667 | 48 | 0.2422 | 0.2688 | 0.2422 |
| No log | 2.7778 | 50 | 0.2397 | 0.2728 | 0.2397 |
| No log | 2.8889 | 52 | 0.2372 | 0.2688 | 0.2372 |
| No log | 3.0 | 54 | 0.2444 | 0.3025 | 0.2444 |
| No log | 3.1111 | 56 | 0.2512 | 0.3711 | 0.2512 |
| No log | 3.2222 | 58 | 0.2356 | 0.3252 | 0.2356 |
| No log | 3.3333 | 60 | 0.2395 | 0.2652 | 0.2395 |
| No log | 3.4444 | 62 | 0.2364 | 0.3424 | 0.2364 |
| No log | 3.5556 | 64 | 0.2393 | 0.3891 | 0.2393 |
| No log | 3.6667 | 66 | 0.2374 | 0.3877 | 0.2374 |
| No log | 3.7778 | 68 | 0.2344 | 0.3590 | 0.2344 |
| No log | 3.8889 | 70 | 0.2383 | 0.3509 | 0.2383 |
| No log | 4.0 | 72 | 0.2414 | 0.3561 | 0.2414 |
| No log | 4.1111 | 74 | 0.2562 | 0.3780 | 0.2562 |
| No log | 4.2222 | 76 | 0.2480 | 0.3775 | 0.2480 |
| No log | 4.3333 | 78 | 0.2372 | 0.3346 | 0.2372 |
| No log | 4.4444 | 80 | 0.2374 | 0.3862 | 0.2374 |
| No log | 4.5556 | 82 | 0.2400 | 0.4009 | 0.2400 |
| No log | 4.6667 | 84 | 0.2397 | 0.3761 | 0.2397 |
| No log | 4.7778 | 86 | 0.2421 | 0.3780 | 0.2421 |
| No log | 4.8889 | 88 | 0.2422 | 0.4085 | 0.2422 |
| No log | 5.0 | 90 | 0.2475 | 0.3510 | 0.2475 |
| No log | 5.1111 | 92 | 0.2516 | 0.3213 | 0.2516 |
| No log | 5.2222 | 94 | 0.2411 | 0.3195 | 0.2411 |
| No log | 5.3333 | 96 | 0.2411 | 0.3936 | 0.2411 |
| No log | 5.4444 | 98 | 0.2487 | 0.3948 | 0.2487 |
| No log | 5.5556 | 100 | 0.2404 | 0.3513 | 0.2404 |
| No log | 5.6667 | 102 | 0.2386 | 0.2965 | 0.2386 |
| No log | 5.7778 | 104 | 0.2498 | 0.2913 | 0.2498 |
| No log | 5.8889 | 106 | 0.2471 | 0.3274 | 0.2471 |
| No log | 6.0 | 108 | 0.2451 | 0.4019 | 0.2451 |
| No log | 6.1111 | 110 | 0.2598 | 0.5037 | 0.2598 |
| No log | 6.2222 | 112 | 0.2620 | 0.4876 | 0.2620 |
| No log | 6.3333 | 114 | 0.2507 | 0.4433 | 0.2507 |
| No log | 6.4444 | 116 | 0.2412 | 0.3147 | 0.2412 |
| No log | 6.5556 | 118 | 0.2475 | 0.2991 | 0.2475 |
| No log | 6.6667 | 120 | 0.2504 | 0.3106 | 0.2504 |
| No log | 6.7778 | 122 | 0.2428 | 0.3103 | 0.2428 |
| No log | 6.8889 | 124 | 0.2451 | 0.3410 | 0.2451 |
| No log | 7.0 | 126 | 0.2482 | 0.3509 | 0.2482 |
| No log | 7.1111 | 128 | 0.2493 | 0.3984 | 0.2493 |
| No log | 7.2222 | 130 | 0.2509 | 0.3757 | 0.2509 |
| No log | 7.3333 | 132 | 0.2537 | 0.3713 | 0.2537 |
| No log | 7.4444 | 134 | 0.2508 | 0.3694 | 0.2508 |
| No log | 7.5556 | 136 | 0.2502 | 0.3626 | 0.2502 |
| No log | 7.6667 | 138 | 0.2486 | 0.3673 | 0.2486 |
| No log | 7.7778 | 140 | 0.2488 | 0.3357 | 0.2488 |
| No log | 7.8889 | 142 | 0.2538 | 0.3178 | 0.2538 |
| No log | 8.0 | 144 | 0.2653 | 0.3018 | 0.2653 |
| No log | 8.1111 | 146 | 0.2720 | 0.3029 | 0.2720 |
| No log | 8.2222 | 148 | 0.2665 | 0.3258 | 0.2665 |
| No log | 8.3333 | 150 | 0.2598 | 0.3725 | 0.2598 |
| No log | 8.4444 | 152 | 0.2597 | 0.3889 | 0.2597 |
| No log | 8.5556 | 154 | 0.2611 | 0.4296 | 0.2611 |
| No log | 8.6667 | 156 | 0.2627 | 0.3969 | 0.2627 |
| No log | 8.7778 | 158 | 0.2627 | 0.3787 | 0.2627 |
| No log | 8.8889 | 160 | 0.2639 | 0.3679 | 0.2639 |
| No log | 9.0 | 162 | 0.2673 | 0.3381 | 0.2673 |
| No log | 9.1111 | 164 | 0.2677 | 0.3197 | 0.2677 |
| No log | 9.2222 | 166 | 0.2642 | 0.3383 | 0.2642 |
| No log | 9.3333 | 168 | 0.2606 | 0.3291 | 0.2606 |
| No log | 9.4444 | 170 | 0.2580 | 0.3307 | 0.2580 |
| No log | 9.5556 | 172 | 0.2570 | 0.3373 | 0.2570 |
| No log | 9.6667 | 174 | 0.2566 | 0.3440 | 0.2566 |
| No log | 9.7778 | 176 | 0.2569 | 0.3506 | 0.2569 |
| No log | 9.8889 | 178 | 0.2572 | 0.3506 | 0.2572 |
| No log | 10.0 | 180 | 0.2574 | 0.3506 | 0.2574 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1