File size: 7,652 Bytes
e91768b d0bce3a e91768b d0bce3a e91768b d0bce3a e91768b d793b40 e91768b d793b40 e91768b d0bce3a e91768b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_relevance_task4_fold4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert_cross_relevance_task4_fold4
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2574
- Qwk: 0.3506
- Mse: 0.2574
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log | 0.1111 | 2 | 0.5156 | 0.0454 | 0.5156 |
| No log | 0.2222 | 4 | 0.4059 | 0.0584 | 0.4059 |
| No log | 0.3333 | 6 | 0.3883 | 0.0664 | 0.3883 |
| No log | 0.4444 | 8 | 0.3323 | 0.0300 | 0.3323 |
| No log | 0.5556 | 10 | 0.3166 | 0.0769 | 0.3166 |
| No log | 0.6667 | 12 | 0.3026 | 0.0769 | 0.3026 |
| No log | 0.7778 | 14 | 0.2709 | 0.1111 | 0.2709 |
| No log | 0.8889 | 16 | 0.2522 | 0.2158 | 0.2522 |
| No log | 1.0 | 18 | 0.2404 | 0.3048 | 0.2404 |
| No log | 1.1111 | 20 | 0.2348 | 0.2941 | 0.2348 |
| No log | 1.2222 | 22 | 0.2318 | 0.3163 | 0.2318 |
| No log | 1.3333 | 24 | 0.2322 | 0.3054 | 0.2322 |
| No log | 1.4444 | 26 | 0.2311 | 0.2906 | 0.2311 |
| No log | 1.5556 | 28 | 0.2619 | 0.2871 | 0.2619 |
| No log | 1.6667 | 30 | 0.2783 | 0.2455 | 0.2783 |
| No log | 1.7778 | 32 | 0.2675 | 0.3226 | 0.2675 |
| No log | 1.8889 | 34 | 0.2424 | 0.2797 | 0.2424 |
| No log | 2.0 | 36 | 0.2390 | 0.2795 | 0.2390 |
| No log | 2.1111 | 38 | 0.2386 | 0.2863 | 0.2386 |
| No log | 2.2222 | 40 | 0.2432 | 0.3256 | 0.2432 |
| No log | 2.3333 | 42 | 0.2747 | 0.4663 | 0.2747 |
| No log | 2.4444 | 44 | 0.2768 | 0.4585 | 0.2768 |
| No log | 2.5556 | 46 | 0.2536 | 0.3640 | 0.2536 |
| No log | 2.6667 | 48 | 0.2422 | 0.2688 | 0.2422 |
| No log | 2.7778 | 50 | 0.2397 | 0.2728 | 0.2397 |
| No log | 2.8889 | 52 | 0.2372 | 0.2688 | 0.2372 |
| No log | 3.0 | 54 | 0.2444 | 0.3025 | 0.2444 |
| No log | 3.1111 | 56 | 0.2512 | 0.3711 | 0.2512 |
| No log | 3.2222 | 58 | 0.2356 | 0.3252 | 0.2356 |
| No log | 3.3333 | 60 | 0.2395 | 0.2652 | 0.2395 |
| No log | 3.4444 | 62 | 0.2364 | 0.3424 | 0.2364 |
| No log | 3.5556 | 64 | 0.2393 | 0.3891 | 0.2393 |
| No log | 3.6667 | 66 | 0.2374 | 0.3877 | 0.2374 |
| No log | 3.7778 | 68 | 0.2344 | 0.3590 | 0.2344 |
| No log | 3.8889 | 70 | 0.2383 | 0.3509 | 0.2383 |
| No log | 4.0 | 72 | 0.2414 | 0.3561 | 0.2414 |
| No log | 4.1111 | 74 | 0.2562 | 0.3780 | 0.2562 |
| No log | 4.2222 | 76 | 0.2480 | 0.3775 | 0.2480 |
| No log | 4.3333 | 78 | 0.2372 | 0.3346 | 0.2372 |
| No log | 4.4444 | 80 | 0.2374 | 0.3862 | 0.2374 |
| No log | 4.5556 | 82 | 0.2400 | 0.4009 | 0.2400 |
| No log | 4.6667 | 84 | 0.2397 | 0.3761 | 0.2397 |
| No log | 4.7778 | 86 | 0.2421 | 0.3780 | 0.2421 |
| No log | 4.8889 | 88 | 0.2422 | 0.4085 | 0.2422 |
| No log | 5.0 | 90 | 0.2475 | 0.3510 | 0.2475 |
| No log | 5.1111 | 92 | 0.2516 | 0.3213 | 0.2516 |
| No log | 5.2222 | 94 | 0.2411 | 0.3195 | 0.2411 |
| No log | 5.3333 | 96 | 0.2411 | 0.3936 | 0.2411 |
| No log | 5.4444 | 98 | 0.2487 | 0.3948 | 0.2487 |
| No log | 5.5556 | 100 | 0.2404 | 0.3513 | 0.2404 |
| No log | 5.6667 | 102 | 0.2386 | 0.2965 | 0.2386 |
| No log | 5.7778 | 104 | 0.2498 | 0.2913 | 0.2498 |
| No log | 5.8889 | 106 | 0.2471 | 0.3274 | 0.2471 |
| No log | 6.0 | 108 | 0.2451 | 0.4019 | 0.2451 |
| No log | 6.1111 | 110 | 0.2598 | 0.5037 | 0.2598 |
| No log | 6.2222 | 112 | 0.2620 | 0.4876 | 0.2620 |
| No log | 6.3333 | 114 | 0.2507 | 0.4433 | 0.2507 |
| No log | 6.4444 | 116 | 0.2412 | 0.3147 | 0.2412 |
| No log | 6.5556 | 118 | 0.2475 | 0.2991 | 0.2475 |
| No log | 6.6667 | 120 | 0.2504 | 0.3106 | 0.2504 |
| No log | 6.7778 | 122 | 0.2428 | 0.3103 | 0.2428 |
| No log | 6.8889 | 124 | 0.2451 | 0.3410 | 0.2451 |
| No log | 7.0 | 126 | 0.2482 | 0.3509 | 0.2482 |
| No log | 7.1111 | 128 | 0.2493 | 0.3984 | 0.2493 |
| No log | 7.2222 | 130 | 0.2509 | 0.3757 | 0.2509 |
| No log | 7.3333 | 132 | 0.2537 | 0.3713 | 0.2537 |
| No log | 7.4444 | 134 | 0.2508 | 0.3694 | 0.2508 |
| No log | 7.5556 | 136 | 0.2502 | 0.3626 | 0.2502 |
| No log | 7.6667 | 138 | 0.2486 | 0.3673 | 0.2486 |
| No log | 7.7778 | 140 | 0.2488 | 0.3357 | 0.2488 |
| No log | 7.8889 | 142 | 0.2538 | 0.3178 | 0.2538 |
| No log | 8.0 | 144 | 0.2653 | 0.3018 | 0.2653 |
| No log | 8.1111 | 146 | 0.2720 | 0.3029 | 0.2720 |
| No log | 8.2222 | 148 | 0.2665 | 0.3258 | 0.2665 |
| No log | 8.3333 | 150 | 0.2598 | 0.3725 | 0.2598 |
| No log | 8.4444 | 152 | 0.2597 | 0.3889 | 0.2597 |
| No log | 8.5556 | 154 | 0.2611 | 0.4296 | 0.2611 |
| No log | 8.6667 | 156 | 0.2627 | 0.3969 | 0.2627 |
| No log | 8.7778 | 158 | 0.2627 | 0.3787 | 0.2627 |
| No log | 8.8889 | 160 | 0.2639 | 0.3679 | 0.2639 |
| No log | 9.0 | 162 | 0.2673 | 0.3381 | 0.2673 |
| No log | 9.1111 | 164 | 0.2677 | 0.3197 | 0.2677 |
| No log | 9.2222 | 166 | 0.2642 | 0.3383 | 0.2642 |
| No log | 9.3333 | 168 | 0.2606 | 0.3291 | 0.2606 |
| No log | 9.4444 | 170 | 0.2580 | 0.3307 | 0.2580 |
| No log | 9.5556 | 172 | 0.2570 | 0.3373 | 0.2570 |
| No log | 9.6667 | 174 | 0.2566 | 0.3440 | 0.2566 |
| No log | 9.7778 | 176 | 0.2569 | 0.3506 | 0.2569 |
| No log | 9.8889 | 178 | 0.2572 | 0.3506 | 0.2572 |
| No log | 10.0 | 180 | 0.2574 | 0.3506 | 0.2574 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|