lilt-en-funsd / README.md
rushabhGod's picture
End of training
9e0248e verified
|
raw
history blame
7.99 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7584
  • Answer: {'precision': 0.8773364485981309, 'recall': 0.9192166462668299, 'f1': 0.8977884040645547, 'number': 817}
  • Header: {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119}
  • Question: {'precision': 0.9097605893186004, 'recall': 0.9173630454967502, 'f1': 0.9135460009246417, 'number': 1077}
  • Overall Precision: 0.8833
  • Overall Recall: 0.8952
  • Overall F1: 0.8892
  • Overall Accuracy: 0.8076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3859 10.5263 200 1.1901 {'precision': 0.8349514563106796, 'recall': 0.8421052631578947, 'f1': 0.8385131017672149, 'number': 817} {'precision': 0.42953020134228187, 'recall': 0.5378151260504201, 'f1': 0.47761194029850745, 'number': 119} {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} 0.8270 0.8594 0.8429 0.7738
0.0461 21.0526 400 1.3985 {'precision': 0.8586448598130841, 'recall': 0.8996328029375765, 'f1': 0.8786610878661089, 'number': 817} {'precision': 0.5, 'recall': 0.6050420168067226, 'f1': 0.5475285171102661, 'number': 119} {'precision': 0.8864468864468864, 'recall': 0.8987929433611885, 'f1': 0.8925772245274319, 'number': 1077} 0.8485 0.8818 0.8648 0.7846
0.0139 31.5789 600 1.4340 {'precision': 0.8617021276595744, 'recall': 0.8922888616891065, 'f1': 0.8767288033674082, 'number': 817} {'precision': 0.5263157894736842, 'recall': 0.5882352941176471, 'f1': 0.5555555555555555, 'number': 119} {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} 0.8470 0.8828 0.8645 0.8029
0.0074 42.1053 800 1.5489 {'precision': 0.8450057405281286, 'recall': 0.9008567931456548, 'f1': 0.8720379146919431, 'number': 817} {'precision': 0.6344086021505376, 'recall': 0.4957983193277311, 'f1': 0.5566037735849056, 'number': 119} {'precision': 0.8733738074588031, 'recall': 0.9350046425255338, 'f1': 0.9031390134529148, 'number': 1077} 0.8512 0.8952 0.8726 0.7957
0.0026 52.6316 1000 1.6408 {'precision': 0.8661800486618005, 'recall': 0.8714810281517748, 'f1': 0.8688224527150702, 'number': 817} {'precision': 0.5932203389830508, 'recall': 0.5882352941176471, 'f1': 0.5907172995780592, 'number': 119} {'precision': 0.8859964093357271, 'recall': 0.9164345403899722, 'f1': 0.9009584664536742, 'number': 1077} 0.8612 0.8788 0.8699 0.7988
0.005 63.1579 1200 1.5299 {'precision': 0.8518518518518519, 'recall': 0.9008567931456548, 'f1': 0.875669244497323, 'number': 817} {'precision': 0.6407766990291263, 'recall': 0.5546218487394958, 'f1': 0.5945945945945947, 'number': 119} {'precision': 0.883128295254833, 'recall': 0.9331476323119777, 'f1': 0.90744920993228, 'number': 1077} 0.8584 0.8977 0.8776 0.8010
0.004 73.6842 1400 1.5962 {'precision': 0.8402699662542182, 'recall': 0.9143206854345165, 'f1': 0.8757327080890973, 'number': 817} {'precision': 0.5625, 'recall': 0.5294117647058824, 'f1': 0.5454545454545455, 'number': 119} {'precision': 0.8923076923076924, 'recall': 0.9155060352831941, 'f1': 0.9037580201649862, 'number': 1077} 0.8528 0.8922 0.8721 0.8084
0.0007 84.2105 1600 1.6587 {'precision': 0.8458904109589042, 'recall': 0.9069767441860465, 'f1': 0.8753691671588896, 'number': 817} {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119} {'precision': 0.8946894689468947, 'recall': 0.9229340761374187, 'f1': 0.9085923217550275, 'number': 1077} 0.8610 0.8957 0.8780 0.8051
0.0007 94.7368 1800 1.5919 {'precision': 0.8495475113122172, 'recall': 0.9192166462668299, 'f1': 0.8830099941211051, 'number': 817} {'precision': 0.6055045871559633, 'recall': 0.5546218487394958, 'f1': 0.5789473684210525, 'number': 119} {'precision': 0.9030797101449275, 'recall': 0.9257195914577531, 'f1': 0.9142595139844107, 'number': 1077} 0.8650 0.9011 0.8827 0.8102
0.0004 105.2632 2000 1.7501 {'precision': 0.8614318706697459, 'recall': 0.9130966952264382, 'f1': 0.8865121806298276, 'number': 817} {'precision': 0.6052631578947368, 'recall': 0.5798319327731093, 'f1': 0.5922746781115881, 'number': 119} {'precision': 0.9106976744186046, 'recall': 0.9090064995357474, 'f1': 0.9098513011152416, 'number': 1077} 0.8730 0.8912 0.8820 0.8070
0.0003 115.7895 2200 1.7584 {'precision': 0.8773364485981309, 'recall': 0.9192166462668299, 'f1': 0.8977884040645547, 'number': 817} {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119} {'precision': 0.9097605893186004, 'recall': 0.9173630454967502, 'f1': 0.9135460009246417, 'number': 1077} 0.8833 0.8952 0.8892 0.8076
0.0001 126.3158 2400 1.7527 {'precision': 0.8525714285714285, 'recall': 0.9130966952264382, 'f1': 0.8817966903073285, 'number': 817} {'precision': 0.6237623762376238, 'recall': 0.5294117647058824, 'f1': 0.5727272727272728, 'number': 119} {'precision': 0.8963963963963963, 'recall': 0.9238625812441968, 'f1': 0.9099222679469592, 'number': 1077} 0.8648 0.8962 0.8802 0.8057

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1