File size: 7,993 Bytes
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e0248e
 
 
 
 
 
 
 
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00969a9
 
cf0fd57
 
 
 
 
 
 
 
 
 
 
 
 
 
00969a9
 
b248799
 
00969a9
 
 
b248799
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7584
- Answer: {'precision': 0.8773364485981309, 'recall': 0.9192166462668299, 'f1': 0.8977884040645547, 'number': 817}
- Header: {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119}
- Question: {'precision': 0.9097605893186004, 'recall': 0.9173630454967502, 'f1': 0.9135460009246417, 'number': 1077}
- Overall Precision: 0.8833
- Overall Recall: 0.8952
- Overall F1: 0.8892
- Overall Accuracy: 0.8076

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                     | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.3859        | 10.5263  | 200  | 1.1901          | {'precision': 0.8349514563106796, 'recall': 0.8421052631578947, 'f1': 0.8385131017672149, 'number': 817} | {'precision': 0.42953020134228187, 'recall': 0.5378151260504201, 'f1': 0.47761194029850745, 'number': 119} | {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} | 0.8270            | 0.8594         | 0.8429     | 0.7738           |
| 0.0461        | 21.0526  | 400  | 1.3985          | {'precision': 0.8586448598130841, 'recall': 0.8996328029375765, 'f1': 0.8786610878661089, 'number': 817} | {'precision': 0.5, 'recall': 0.6050420168067226, 'f1': 0.5475285171102661, 'number': 119}                  | {'precision': 0.8864468864468864, 'recall': 0.8987929433611885, 'f1': 0.8925772245274319, 'number': 1077} | 0.8485            | 0.8818         | 0.8648     | 0.7846           |
| 0.0139        | 31.5789  | 600  | 1.4340          | {'precision': 0.8617021276595744, 'recall': 0.8922888616891065, 'f1': 0.8767288033674082, 'number': 817} | {'precision': 0.5263157894736842, 'recall': 0.5882352941176471, 'f1': 0.5555555555555555, 'number': 119}   | {'precision': 0.8739946380697051, 'recall': 0.9080779944289693, 'f1': 0.8907103825136613, 'number': 1077} | 0.8470            | 0.8828         | 0.8645     | 0.8029           |
| 0.0074        | 42.1053  | 800  | 1.5489          | {'precision': 0.8450057405281286, 'recall': 0.9008567931456548, 'f1': 0.8720379146919431, 'number': 817} | {'precision': 0.6344086021505376, 'recall': 0.4957983193277311, 'f1': 0.5566037735849056, 'number': 119}   | {'precision': 0.8733738074588031, 'recall': 0.9350046425255338, 'f1': 0.9031390134529148, 'number': 1077} | 0.8512            | 0.8952         | 0.8726     | 0.7957           |
| 0.0026        | 52.6316  | 1000 | 1.6408          | {'precision': 0.8661800486618005, 'recall': 0.8714810281517748, 'f1': 0.8688224527150702, 'number': 817} | {'precision': 0.5932203389830508, 'recall': 0.5882352941176471, 'f1': 0.5907172995780592, 'number': 119}   | {'precision': 0.8859964093357271, 'recall': 0.9164345403899722, 'f1': 0.9009584664536742, 'number': 1077} | 0.8612            | 0.8788         | 0.8699     | 0.7988           |
| 0.005         | 63.1579  | 1200 | 1.5299          | {'precision': 0.8518518518518519, 'recall': 0.9008567931456548, 'f1': 0.875669244497323, 'number': 817}  | {'precision': 0.6407766990291263, 'recall': 0.5546218487394958, 'f1': 0.5945945945945947, 'number': 119}   | {'precision': 0.883128295254833, 'recall': 0.9331476323119777, 'f1': 0.90744920993228, 'number': 1077}    | 0.8584            | 0.8977         | 0.8776     | 0.8010           |
| 0.004         | 73.6842  | 1400 | 1.5962          | {'precision': 0.8402699662542182, 'recall': 0.9143206854345165, 'f1': 0.8757327080890973, 'number': 817} | {'precision': 0.5625, 'recall': 0.5294117647058824, 'f1': 0.5454545454545455, 'number': 119}               | {'precision': 0.8923076923076924, 'recall': 0.9155060352831941, 'f1': 0.9037580201649862, 'number': 1077} | 0.8528            | 0.8922         | 0.8721     | 0.8084           |
| 0.0007        | 84.2105  | 1600 | 1.6587          | {'precision': 0.8458904109589042, 'recall': 0.9069767441860465, 'f1': 0.8753691671588896, 'number': 817} | {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119}   | {'precision': 0.8946894689468947, 'recall': 0.9229340761374187, 'f1': 0.9085923217550275, 'number': 1077} | 0.8610            | 0.8957         | 0.8780     | 0.8051           |
| 0.0007        | 94.7368  | 1800 | 1.5919          | {'precision': 0.8495475113122172, 'recall': 0.9192166462668299, 'f1': 0.8830099941211051, 'number': 817} | {'precision': 0.6055045871559633, 'recall': 0.5546218487394958, 'f1': 0.5789473684210525, 'number': 119}   | {'precision': 0.9030797101449275, 'recall': 0.9257195914577531, 'f1': 0.9142595139844107, 'number': 1077} | 0.8650            | 0.9011         | 0.8827     | 0.8102           |
| 0.0004        | 105.2632 | 2000 | 1.7501          | {'precision': 0.8614318706697459, 'recall': 0.9130966952264382, 'f1': 0.8865121806298276, 'number': 817} | {'precision': 0.6052631578947368, 'recall': 0.5798319327731093, 'f1': 0.5922746781115881, 'number': 119}   | {'precision': 0.9106976744186046, 'recall': 0.9090064995357474, 'f1': 0.9098513011152416, 'number': 1077} | 0.8730            | 0.8912         | 0.8820     | 0.8070           |
| 0.0003        | 115.7895 | 2200 | 1.7584          | {'precision': 0.8773364485981309, 'recall': 0.9192166462668299, 'f1': 0.8977884040645547, 'number': 817} | {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119}   | {'precision': 0.9097605893186004, 'recall': 0.9173630454967502, 'f1': 0.9135460009246417, 'number': 1077} | 0.8833            | 0.8952         | 0.8892     | 0.8076           |
| 0.0001        | 126.3158 | 2400 | 1.7527          | {'precision': 0.8525714285714285, 'recall': 0.9130966952264382, 'f1': 0.8817966903073285, 'number': 817} | {'precision': 0.6237623762376238, 'recall': 0.5294117647058824, 'f1': 0.5727272727272728, 'number': 119}   | {'precision': 0.8963963963963963, 'recall': 0.9238625812441968, 'f1': 0.9099222679469592, 'number': 1077} | 0.8648            | 0.8962         | 0.8802     | 0.8057           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1