lilt-en-funsd / README.md
rushabhGod's picture
End of training
6b2b386 verified
|
raw
history blame
1.84 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.6706
  • eval_ANSWER: {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817}
  • eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119}
  • eval_QUESTION: {'precision': 0.8880931065353626, 'recall': 0.9210770659238626, 'f1': 0.9042844120328168, 'number': 1077}
  • eval_overall_precision: 0.8718
  • eval_overall_recall: 0.8952
  • eval_overall_f1: 0.8833
  • eval_overall_accuracy: 0.8026
  • eval_runtime: 50.8863
  • eval_samples_per_second: 0.983
  • eval_steps_per_second: 0.138
  • epoch: 90.8421
  • step: 1726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cpu
  • Datasets 2.20.0
  • Tokenizers 0.19.1