metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
results: []
lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 1.6706
- eval_ANSWER: {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817}
- eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119}
- eval_QUESTION: {'precision': 0.8880931065353626, 'recall': 0.9210770659238626, 'f1': 0.9042844120328168, 'number': 1077}
- eval_overall_precision: 0.8718
- eval_overall_recall: 0.8952
- eval_overall_f1: 0.8833
- eval_overall_accuracy: 0.8026
- eval_runtime: 50.8863
- eval_samples_per_second: 0.983
- eval_steps_per_second: 0.138
- epoch: 90.8421
- step: 1726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cpu
- Datasets 2.20.0
- Tokenizers 0.19.1