File size: 1,841 Bytes
b248799 6b2b386 b248799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lilt-en-funsd
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.6706
- eval_ANSWER: {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817}
- eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119}
- eval_QUESTION: {'precision': 0.8880931065353626, 'recall': 0.9210770659238626, 'f1': 0.9042844120328168, 'number': 1077}
- eval_overall_precision: 0.8718
- eval_overall_recall: 0.8952
- eval_overall_f1: 0.8833
- eval_overall_accuracy: 0.8026
- eval_runtime: 50.8863
- eval_samples_per_second: 0.983
- eval_steps_per_second: 0.138
- epoch: 90.8421
- step: 1726
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cpu
- Datasets 2.20.0
- Tokenizers 0.19.1
|