File size: 1,841 Bytes
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b2b386
 
 
 
 
 
 
 
 
 
 
 
 
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---

license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.6706

- eval_ANSWER: {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817}
- eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119}

- eval_QUESTION: {'precision': 0.8880931065353626, 'recall': 0.9210770659238626, 'f1': 0.9042844120328168, 'number': 1077}
- eval_overall_precision: 0.8718
- eval_overall_recall: 0.8952
- eval_overall_f1: 0.8833
- eval_overall_accuracy: 0.8026
- eval_runtime: 50.8863

- eval_samples_per_second: 0.983
- eval_steps_per_second: 0.138

- epoch: 90.8421

- step: 1726



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500

- mixed_precision_training: Native AMP



### Framework versions



- Transformers 4.42.4

- Pytorch 2.3.1+cpu

- Datasets 2.20.0

- Tokenizers 0.19.1