lilt-en-funsd / README.md
rushabhGod's picture
Model save
13dc855 verified
|
raw
history blame
7.98 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6142
  • Answer: {'precision': 0.8502857142857143, 'recall': 0.9106487148102815, 'f1': 0.8794326241134752, 'number': 817}
  • Header: {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119}
  • Question: {'precision': 0.9045871559633027, 'recall': 0.9155060352831941, 'f1': 0.9100138440239963, 'number': 1077}
  • Overall Precision: 0.8681
  • Overall Recall: 0.8927
  • Overall F1: 0.8802
  • Overall Accuracy: 0.8247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4043 10.5263 200 0.9334 {'precision': 0.8331402085747392, 'recall': 0.8800489596083231, 'f1': 0.8559523809523808, 'number': 817} {'precision': 0.4879518072289157, 'recall': 0.680672268907563, 'f1': 0.5684210526315789, 'number': 119} {'precision': 0.8621940163191296, 'recall': 0.883008356545961, 'f1': 0.8724770642201833, 'number': 1077} 0.8213 0.8698 0.8449 0.8028
0.0458 21.0526 400 1.2878 {'precision': 0.8611793611793612, 'recall': 0.8580171358629131, 'f1': 0.8595953402820357, 'number': 817} {'precision': 0.6071428571428571, 'recall': 0.5714285714285714, 'f1': 0.5887445887445888, 'number': 119} {'precision': 0.8597246127366609, 'recall': 0.9275766016713092, 'f1': 0.892362661902635, 'number': 1077} 0.8467 0.8783 0.8622 0.8073
0.0188 31.5789 600 1.2773 {'precision': 0.8287292817679558, 'recall': 0.9179926560587516, 'f1': 0.8710801393728222, 'number': 817} {'precision': 0.5892857142857143, 'recall': 0.5546218487394958, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.90549662487946, 'recall': 0.871866295264624, 'f1': 0.8883632923368022, 'number': 1077} 0.8544 0.8718 0.8630 0.7988
0.007 42.1053 800 1.5029 {'precision': 0.8728121353558926, 'recall': 0.9155446756425949, 'f1': 0.8936678614097969, 'number': 817} {'precision': 0.6458333333333334, 'recall': 0.5210084033613446, 'f1': 0.5767441860465117, 'number': 119} {'precision': 0.8888888888888888, 'recall': 0.9136490250696379, 'f1': 0.9010989010989011, 'number': 1077} 0.8709 0.8912 0.8809 0.8154
0.0031 52.6316 1000 1.5006 {'precision': 0.8540965207631874, 'recall': 0.9314565483476133, 'f1': 0.8911007025761123, 'number': 817} {'precision': 0.5666666666666667, 'recall': 0.5714285714285714, 'f1': 0.5690376569037656, 'number': 119} {'precision': 0.9017447199265382, 'recall': 0.9117920148560817, 'f1': 0.9067405355493999, 'number': 1077} 0.8624 0.8997 0.8806 0.8124
0.0017 63.1579 1200 1.5541 {'precision': 0.8778718258766627, 'recall': 0.8886168910648715, 'f1': 0.8832116788321168, 'number': 817} {'precision': 0.6239316239316239, 'recall': 0.6134453781512605, 'f1': 0.6186440677966102, 'number': 119} {'precision': 0.8927927927927928, 'recall': 0.9201485608170845, 'f1': 0.9062642889803384, 'number': 1077} 0.8715 0.8892 0.8803 0.8150
0.0022 73.6842 1400 1.6132 {'precision': 0.8556461001164144, 'recall': 0.8996328029375765, 'f1': 0.8770883054892601, 'number': 817} {'precision': 0.6304347826086957, 'recall': 0.48739495798319327, 'f1': 0.5497630331753555, 'number': 119} {'precision': 0.8986046511627906, 'recall': 0.8969359331476323, 'f1': 0.8977695167286245, 'number': 1077} 0.8682 0.8738 0.8710 0.8127
0.0019 84.2105 1600 1.5373 {'precision': 0.8615916955017301, 'recall': 0.9143206854345165, 'f1': 0.8871733966745844, 'number': 817} {'precision': 0.6407766990291263, 'recall': 0.5546218487394958, 'f1': 0.5945945945945947, 'number': 119} {'precision': 0.8936936936936937, 'recall': 0.9210770659238626, 'f1': 0.9071787837219937, 'number': 1077} 0.8678 0.8967 0.8820 0.8224
0.0006 94.7368 1800 1.5759 {'precision': 0.8616780045351474, 'recall': 0.9302325581395349, 'f1': 0.8946439081812831, 'number': 817} {'precision': 0.6804123711340206, 'recall': 0.5546218487394958, 'f1': 0.6111111111111112, 'number': 119} {'precision': 0.9055404178019982, 'recall': 0.9257195914577531, 'f1': 0.9155188246097338, 'number': 1077} 0.8764 0.9056 0.8908 0.8294
0.0003 105.2632 2000 1.5537 {'precision': 0.884004884004884, 'recall': 0.8861689106487148, 'f1': 0.8850855745721272, 'number': 817} {'precision': 0.6476190476190476, 'recall': 0.5714285714285714, 'f1': 0.6071428571428571, 'number': 119} {'precision': 0.8874113475177305, 'recall': 0.9294336118848654, 'f1': 0.9079365079365079, 'number': 1077} 0.8738 0.8907 0.8822 0.8209
0.0005 115.7895 2200 1.5898 {'precision': 0.8531791907514451, 'recall': 0.9033047735618115, 'f1': 0.8775267538644471, 'number': 817} {'precision': 0.591304347826087, 'recall': 0.5714285714285714, 'f1': 0.5811965811965812, 'number': 119} {'precision': 0.9015496809480401, 'recall': 0.9182915506035283, 'f1': 0.9098436062557498, 'number': 1077} 0.8642 0.8917 0.8778 0.8223
0.0002 126.3158 2400 1.6142 {'precision': 0.8502857142857143, 'recall': 0.9106487148102815, 'f1': 0.8794326241134752, 'number': 817} {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119} {'precision': 0.9045871559633027, 'recall': 0.9155060352831941, 'f1': 0.9100138440239963, 'number': 1077} 0.8681 0.8927 0.8802 0.8247

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1