File size: 7,978 Bytes
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13dc855
 
 
 
 
 
 
 
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00969a9
 
13dc855
 
 
 
 
 
 
 
 
 
 
 
 
 
00969a9
 
b248799
 
00969a9
 
 
b248799
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6142
- Answer: {'precision': 0.8502857142857143, 'recall': 0.9106487148102815, 'f1': 0.8794326241134752, 'number': 817}
- Header: {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119}
- Question: {'precision': 0.9045871559633027, 'recall': 0.9155060352831941, 'f1': 0.9100138440239963, 'number': 1077}
- Overall Precision: 0.8681
- Overall Recall: 0.8927
- Overall F1: 0.8802
- Overall Accuracy: 0.8247

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4043        | 10.5263  | 200  | 0.9334          | {'precision': 0.8331402085747392, 'recall': 0.8800489596083231, 'f1': 0.8559523809523808, 'number': 817} | {'precision': 0.4879518072289157, 'recall': 0.680672268907563, 'f1': 0.5684210526315789, 'number': 119}   | {'precision': 0.8621940163191296, 'recall': 0.883008356545961, 'f1': 0.8724770642201833, 'number': 1077}  | 0.8213            | 0.8698         | 0.8449     | 0.8028           |
| 0.0458        | 21.0526  | 400  | 1.2878          | {'precision': 0.8611793611793612, 'recall': 0.8580171358629131, 'f1': 0.8595953402820357, 'number': 817} | {'precision': 0.6071428571428571, 'recall': 0.5714285714285714, 'f1': 0.5887445887445888, 'number': 119}  | {'precision': 0.8597246127366609, 'recall': 0.9275766016713092, 'f1': 0.892362661902635, 'number': 1077}  | 0.8467            | 0.8783         | 0.8622     | 0.8073           |
| 0.0188        | 31.5789  | 600  | 1.2773          | {'precision': 0.8287292817679558, 'recall': 0.9179926560587516, 'f1': 0.8710801393728222, 'number': 817} | {'precision': 0.5892857142857143, 'recall': 0.5546218487394958, 'f1': 0.5714285714285715, 'number': 119}  | {'precision': 0.90549662487946, 'recall': 0.871866295264624, 'f1': 0.8883632923368022, 'number': 1077}    | 0.8544            | 0.8718         | 0.8630     | 0.7988           |
| 0.007         | 42.1053  | 800  | 1.5029          | {'precision': 0.8728121353558926, 'recall': 0.9155446756425949, 'f1': 0.8936678614097969, 'number': 817} | {'precision': 0.6458333333333334, 'recall': 0.5210084033613446, 'f1': 0.5767441860465117, 'number': 119}  | {'precision': 0.8888888888888888, 'recall': 0.9136490250696379, 'f1': 0.9010989010989011, 'number': 1077} | 0.8709            | 0.8912         | 0.8809     | 0.8154           |
| 0.0031        | 52.6316  | 1000 | 1.5006          | {'precision': 0.8540965207631874, 'recall': 0.9314565483476133, 'f1': 0.8911007025761123, 'number': 817} | {'precision': 0.5666666666666667, 'recall': 0.5714285714285714, 'f1': 0.5690376569037656, 'number': 119}  | {'precision': 0.9017447199265382, 'recall': 0.9117920148560817, 'f1': 0.9067405355493999, 'number': 1077} | 0.8624            | 0.8997         | 0.8806     | 0.8124           |
| 0.0017        | 63.1579  | 1200 | 1.5541          | {'precision': 0.8778718258766627, 'recall': 0.8886168910648715, 'f1': 0.8832116788321168, 'number': 817} | {'precision': 0.6239316239316239, 'recall': 0.6134453781512605, 'f1': 0.6186440677966102, 'number': 119}  | {'precision': 0.8927927927927928, 'recall': 0.9201485608170845, 'f1': 0.9062642889803384, 'number': 1077} | 0.8715            | 0.8892         | 0.8803     | 0.8150           |
| 0.0022        | 73.6842  | 1400 | 1.6132          | {'precision': 0.8556461001164144, 'recall': 0.8996328029375765, 'f1': 0.8770883054892601, 'number': 817} | {'precision': 0.6304347826086957, 'recall': 0.48739495798319327, 'f1': 0.5497630331753555, 'number': 119} | {'precision': 0.8986046511627906, 'recall': 0.8969359331476323, 'f1': 0.8977695167286245, 'number': 1077} | 0.8682            | 0.8738         | 0.8710     | 0.8127           |
| 0.0019        | 84.2105  | 1600 | 1.5373          | {'precision': 0.8615916955017301, 'recall': 0.9143206854345165, 'f1': 0.8871733966745844, 'number': 817} | {'precision': 0.6407766990291263, 'recall': 0.5546218487394958, 'f1': 0.5945945945945947, 'number': 119}  | {'precision': 0.8936936936936937, 'recall': 0.9210770659238626, 'f1': 0.9071787837219937, 'number': 1077} | 0.8678            | 0.8967         | 0.8820     | 0.8224           |
| 0.0006        | 94.7368  | 1800 | 1.5759          | {'precision': 0.8616780045351474, 'recall': 0.9302325581395349, 'f1': 0.8946439081812831, 'number': 817} | {'precision': 0.6804123711340206, 'recall': 0.5546218487394958, 'f1': 0.6111111111111112, 'number': 119}  | {'precision': 0.9055404178019982, 'recall': 0.9257195914577531, 'f1': 0.9155188246097338, 'number': 1077} | 0.8764            | 0.9056         | 0.8908     | 0.8294           |
| 0.0003        | 105.2632 | 2000 | 1.5537          | {'precision': 0.884004884004884, 'recall': 0.8861689106487148, 'f1': 0.8850855745721272, 'number': 817}  | {'precision': 0.6476190476190476, 'recall': 0.5714285714285714, 'f1': 0.6071428571428571, 'number': 119}  | {'precision': 0.8874113475177305, 'recall': 0.9294336118848654, 'f1': 0.9079365079365079, 'number': 1077} | 0.8738            | 0.8907         | 0.8822     | 0.8209           |
| 0.0005        | 115.7895 | 2200 | 1.5898          | {'precision': 0.8531791907514451, 'recall': 0.9033047735618115, 'f1': 0.8775267538644471, 'number': 817} | {'precision': 0.591304347826087, 'recall': 0.5714285714285714, 'f1': 0.5811965811965812, 'number': 119}   | {'precision': 0.9015496809480401, 'recall': 0.9182915506035283, 'f1': 0.9098436062557498, 'number': 1077} | 0.8642            | 0.8917         | 0.8778     | 0.8223           |
| 0.0002        | 126.3158 | 2400 | 1.6142          | {'precision': 0.8502857142857143, 'recall': 0.9106487148102815, 'f1': 0.8794326241134752, 'number': 817} | {'precision': 0.638095238095238, 'recall': 0.5630252100840336, 'f1': 0.5982142857142857, 'number': 119}   | {'precision': 0.9045871559633027, 'recall': 0.9155060352831941, 'f1': 0.9100138440239963, 'number': 1077} | 0.8681            | 0.8927         | 0.8802     | 0.8247           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1