metadata
license: gpl-3.0
tags:
- DocVQA
- Document Question Answering
- Document Visual Question Answering
datasets:
- MP-DocVQA
language:
- en
Longformer base fine-tuned on MP-DocVQA
This is Longformer-base trained on SQuAD v1 from Valhalla hub and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
This model was used as a baseline in Hierarchical multimodal transformers for Multi-Page DocVQA.
- Results on the MP-DocVQA dataset are reported in Table 2.
- Training hyperparameters can be found in Table 8 of Appendix D.
How to use
Here is how to use this model to get the features of a given text in PyTorch:
import torch
from transformers import LongformerTokenizerFast, LongformerForQuestionAnswering
tokenizer = LongformerTokenizerFast.from_pretrained("rubentito/longformer-base-mpdocvqa")
model = LongformerForQuestionAnswering.from_pretrained("rubentito/longformer-base-mpdocvqa")
text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done?"
encoding = tokenizer(question, text, return_tensors="pt")
input_ids = encoding["input_ids"]
# default is local attention everywhere
# the forward method will automatically set global attention on question tokens attention_mask=encoding["attention_mask"]
start_scores, end_scores = model(input_ids, attention_mask=attention_mask)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
BibTeX entry
@article{tito2022hierarchical,
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
journal={arXiv preprint arXiv:2212.05935},
year={2022}
}