Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
---
|
2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
+
tags:
|
4 |
+
- DocVQA
|
5 |
+
- Document Question Answering
|
6 |
+
- Document Visual Question Answering
|
7 |
+
datasets:
|
8 |
+
- MP-DocVQA
|
9 |
+
language:
|
10 |
+
- en
|
11 |
---
|
12 |
+
|
13 |
+
# Longformer base fine-tuned on MP-DocVQA
|
14 |
+
|
15 |
+
This is Longformer-base trained on SQuAD v1 from [Valhalla hub](https://huggingface.co/valhalla/longformer-base-4096-finetuned-squadv1) and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
|
16 |
+
|
17 |
+
|
18 |
+
This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
|
19 |
+
- Results on the MP-DocVQA dataset are reported in Table 2.
|
20 |
+
- Training hyperparameters can be found in Table 8 of Appendix D.
|
21 |
+
|
22 |
+
## How to use
|
23 |
+
|
24 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
25 |
+
|
26 |
+
```python
|
27 |
+
import torch
|
28 |
+
from transformers import LongformerTokenizerFast, LongformerForQuestionAnswering
|
29 |
+
|
30 |
+
tokenizer = LongformerTokenizerFast.from_pretrained("rubentito/longformer-base-mpdocvqa")
|
31 |
+
model = LongformerForQuestionAnswering.from_pretrained("rubentito/longformer-base-mpdocvqa")
|
32 |
+
|
33 |
+
text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
|
34 |
+
question = "What has Huggingface done?"
|
35 |
+
encoding = tokenizer(question, text, return_tensors="pt")
|
36 |
+
input_ids = encoding["input_ids"]
|
37 |
+
|
38 |
+
# default is local attention everywhere
|
39 |
+
# the forward method will automatically set global attention on question tokens attention_mask=encoding["attention_mask"]
|
40 |
+
|
41 |
+
start_scores, end_scores = model(input_ids, attention_mask=attention_mask)
|
42 |
+
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
|
43 |
+
|
44 |
+
answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1]
|
45 |
+
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
|
46 |
+
```
|
47 |
+
|
48 |
+
## BibTeX entry
|
49 |
+
|
50 |
+
```tex
|
51 |
+
@article{tito2022hierarchical,
|
52 |
+
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
|
53 |
+
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
|
54 |
+
journal={arXiv preprint arXiv:2212.05935},
|
55 |
+
year={2022}
|
56 |
+
}
|
57 |
+
```
|