|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: emotion_classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.56875 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# emotion_classification |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2493 |
|
- Accuracy: 0.5687 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.0679 | 1.0 | 10 | 2.0574 | 0.175 | |
|
| 2.0366 | 2.0 | 20 | 2.0083 | 0.2812 | |
|
| 1.9469 | 3.0 | 30 | 1.9119 | 0.35 | |
|
| 1.8166 | 4.0 | 40 | 1.7702 | 0.4125 | |
|
| 1.6821 | 5.0 | 50 | 1.6176 | 0.45 | |
|
| 1.5587 | 6.0 | 60 | 1.5747 | 0.425 | |
|
| 1.4703 | 7.0 | 70 | 1.4444 | 0.5375 | |
|
| 1.4032 | 8.0 | 80 | 1.4226 | 0.5312 | |
|
| 1.3367 | 9.0 | 90 | 1.3937 | 0.5188 | |
|
| 1.2889 | 10.0 | 100 | 1.3186 | 0.5375 | |
|
| 1.2136 | 11.0 | 110 | 1.3313 | 0.55 | |
|
| 1.1745 | 12.0 | 120 | 1.3027 | 0.5312 | |
|
| 1.1477 | 13.0 | 130 | 1.3004 | 0.5375 | |
|
| 1.1414 | 14.0 | 140 | 1.2442 | 0.55 | |
|
| 1.1202 | 15.0 | 150 | 1.2957 | 0.5062 | |
|
| 1.0923 | 16.0 | 160 | 1.3045 | 0.5125 | |
|
| 1.0765 | 17.0 | 170 | 1.2533 | 0.5563 | |
|
| 1.0678 | 18.0 | 180 | 1.2392 | 0.5437 | |
|
| 1.0837 | 19.0 | 190 | 1.2750 | 0.5375 | |
|
| 1.0562 | 20.0 | 200 | 1.2275 | 0.5625 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|