ruben09's picture
End of training
b3e7242 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.56875

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2493
  • Accuracy: 0.5687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0679 1.0 10 2.0574 0.175
2.0366 2.0 20 2.0083 0.2812
1.9469 3.0 30 1.9119 0.35
1.8166 4.0 40 1.7702 0.4125
1.6821 5.0 50 1.6176 0.45
1.5587 6.0 60 1.5747 0.425
1.4703 7.0 70 1.4444 0.5375
1.4032 8.0 80 1.4226 0.5312
1.3367 9.0 90 1.3937 0.5188
1.2889 10.0 100 1.3186 0.5375
1.2136 11.0 110 1.3313 0.55
1.1745 12.0 120 1.3027 0.5312
1.1477 13.0 130 1.3004 0.5375
1.1414 14.0 140 1.2442 0.55
1.1202 15.0 150 1.2957 0.5062
1.0923 16.0 160 1.3045 0.5125
1.0765 17.0 170 1.2533 0.5563
1.0678 18.0 180 1.2392 0.5437
1.0837 19.0 190 1.2750 0.5375
1.0562 20.0 200 1.2275 0.5625

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1