|
--- |
|
datasets: |
|
- roneneldan/TinyStories |
|
--- |
|
Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759 |
|
|
|
Based on GPT-Neo architecture. |
|
|
|
License: mit |
|
|
|
--- |
|
hyperparams used to train this model: |
|
|
|
lr = 5e-4, |
|
lr_schedule = constant, |
|
wd=0.1, |
|
adam_beta1=0.9, adam_beta2 = 0.95, |
|
context_length=512, |
|
batch_size=80, |
|
gradient_accumulation_steps=16 |
|
|
|
------ EXAMPLE USAGE --- |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") |
|
|
|
prompt = "Once upon a time there was" |
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
|
|
# Generate completion |
|
output = model.generate(input_ids, max_length = 1000, num_beams=1) |
|
|
|
# Decode the completion |
|
output_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
# Print the generated text |
|
print(output_text) |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_roneneldan__TinyStories-33M) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 24.38 | |
|
| ARC (25-shot) | 24.23 | |
|
| HellaSwag (10-shot) | 25.69 | |
|
| MMLU (5-shot) | 23.82 | |
|
| TruthfulQA (0-shot) | 47.64 | |
|
| Winogrande (5-shot) | 49.09 | |
|
| GSM8K (5-shot) | 0.0 | |
|
| DROP (3-shot) | 0.19 | |
|
|