TinyStories-33M / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
c7af953
|
raw
history blame
1.59 kB
metadata
datasets:
  - roneneldan/TinyStories

Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759

Based on GPT-Neo architecture.

License: mit


hyperparams used to train this model:

lr = 5e-4, lr_schedule = constant, wd=0.1, adam_beta1=0.9, adam_beta2 = 0.95, context_length=512, batch_size=80, gradient_accumulation_steps=16

------ EXAMPLE USAGE ---

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M')

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")

prompt = "Once upon a time there was"

input_ids = tokenizer.encode(prompt, return_tensors="pt")

Generate completion

output = model.generate(input_ids, max_length = 1000, num_beams=1)

Decode the completion

output_text = tokenizer.decode(output[0], skip_special_tokens=True)

Print the generated text

print(output_text)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 24.38
ARC (25-shot) 24.23
HellaSwag (10-shot) 25.69
MMLU (5-shot) 23.82
TruthfulQA (0-shot) 47.64
Winogrande (5-shot) 49.09
GSM8K (5-shot) 0.0
DROP (3-shot) 0.19