ORF-small-de / README.md
rmacek's picture
End of training
24babce verified
metadata
language:
  - de
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - rmacek/ORF-whisper-small
metrics:
  - wer
model-index:
  - name: Whisper ORF Bundeslaender
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ZIB2 Common Voice
          type: rmacek/ORF-whisper-small
          args: 'config: de, split: test'
        metrics:
          - type: wer
            value: 27.268895060503866
            name: Wer

Whisper ORF Bundeslaender

This model is a fine-tuned version of openai/whisper-small on the ZIB2 Common Voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7038
  • Wer: 27.2689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4896 1.7153 1000 0.6019 26.6961
0.3559 3.4305 2000 0.6038 26.6192
0.259 5.1458 3000 0.6216 33.8450
0.3272 6.8611 4000 0.6382 27.0730
0.2413 8.5763 5000 0.6704 31.3207
0.1691 10.2916 6000 0.6922 27.2466
0.1702 12.0069 7000 0.7008 27.3284
0.1726 13.7221 8000 0.7038 27.2689

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1