ORF-small-de / README.md
rmacek's picture
End of training
24babce verified
---
language:
- de
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- rmacek/ORF-whisper-small
metrics:
- wer
model-index:
- name: Whisper ORF Bundeslaender
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: ZIB2 Common Voice
type: rmacek/ORF-whisper-small
args: 'config: de, split: test'
metrics:
- type: wer
value: 27.268895060503866
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper ORF Bundeslaender
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ZIB2 Common Voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7038
- Wer: 27.2689
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.4896 | 1.7153 | 1000 | 0.6019 | 26.6961 |
| 0.3559 | 3.4305 | 2000 | 0.6038 | 26.6192 |
| 0.259 | 5.1458 | 3000 | 0.6216 | 33.8450 |
| 0.3272 | 6.8611 | 4000 | 0.6382 | 27.0730 |
| 0.2413 | 8.5763 | 5000 | 0.6704 | 31.3207 |
| 0.1691 | 10.2916 | 6000 | 0.6922 | 27.2466 |
| 0.1702 | 12.0069 | 7000 | 0.7008 | 27.3284 |
| 0.1726 | 13.7221 | 8000 | 0.7038 | 27.2689 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1