ORF-small-de / README.md
rmacek's picture
End of training
4bb2d8b verified
|
raw
history blame
2.28 kB
metadata
language:
  - de
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - rmacek/ORF-whisper-small
metrics:
  - wer
model-index:
  - name: Whisper ORF Bundeslaender
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ZIB2 Common Voice
          type: rmacek/ORF-whisper-small
          args: 'config: de, split: test'
        metrics:
          - type: wer
            value: 29.46806728721495
            name: Wer

Whisper ORF Bundeslaender

This model is a fine-tuned version of openai/whisper-small on the ZIB2 Common Voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7149
  • Wer: 29.4681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5717 1.7153 1000 0.6098 35.2851
0.41 3.4305 2000 0.6053 32.7056
0.386 5.1458 3000 0.6148 26.9699
0.3123 6.8611 4000 0.6345 26.4842
0.2183 8.5763 5000 0.6622 28.1329
0.2231 10.2916 6000 0.6901 28.5253
0.2259 12.0069 7000 0.7028 27.4413
0.1708 13.7221 8000 0.7149 29.4681

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1