--- language: - de license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-small datasets: - rmacek/ORF-whisper-small metrics: - wer model-index: - name: Whisper ORF Bundeslaender results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ZIB2 Common Voice type: rmacek/ORF-whisper-small args: 'config: de, split: test' metrics: - type: wer value: 29.46806728721495 name: Wer --- # Whisper ORF Bundeslaender This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ZIB2 Common Voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7149 - Wer: 29.4681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.5717 | 1.7153 | 1000 | 0.6098 | 35.2851 | | 0.41 | 3.4305 | 2000 | 0.6053 | 32.7056 | | 0.386 | 5.1458 | 3000 | 0.6148 | 26.9699 | | 0.3123 | 6.8611 | 4000 | 0.6345 | 26.4842 | | 0.2183 | 8.5763 | 5000 | 0.6622 | 28.1329 | | 0.2231 | 10.2916 | 6000 | 0.6901 | 28.5253 | | 0.2259 | 12.0069 | 7000 | 0.7028 | 27.4413 | | 0.1708 | 13.7221 | 8000 | 0.7149 | 29.4681 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1