redscroll's picture
redscroll/roberta-finetuned-domains
237aba4
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: roberta-finetuned-domains
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-domains
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8502
- F1: 0.3317
- Roc Auc: 0.5777
- Accuracy: 0.1883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.2412 | 1.0 | 24797 | 0.8502 | 0.3317 | 0.5777 | 0.1883 |
| 0.129 | 2.0 | 49594 | 0.9576 | 0.3219 | 0.5724 | 0.1962 |
| 0.1072 | 3.0 | 74391 | 1.2442 | 0.3260 | 0.5718 | 0.1906 |
| 0.0422 | 4.0 | 99188 | 1.4241 | 0.3259 | 0.5723 | 0.1927 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3