File size: 1,750 Bytes
a37a0f6
b36fd18
 
a37a0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b36fd18
a37a0f6
237aba4
 
 
 
a37a0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b36fd18
 
a37a0f6
 
 
b36fd18
 
237aba4
 
 
 
a37a0f6
 
 
 
237aba4
a37a0f6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: roberta-finetuned-domains
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-domains

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8502
- F1: 0.3317
- Roc Auc: 0.5777
- Accuracy: 0.1883

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.2412        | 1.0   | 24797 | 0.8502          | 0.3317 | 0.5777  | 0.1883   |
| 0.129         | 2.0   | 49594 | 0.9576          | 0.3219 | 0.5724  | 0.1962   |
| 0.1072        | 3.0   | 74391 | 1.2442          | 0.3260 | 0.5718  | 0.1906   |
| 0.0422        | 4.0   | 99188 | 1.4241          | 0.3259 | 0.5723  | 0.1927   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3