metadata
tags:
- sentence-transformers
- sentence-similarity
- loss:OnlineContrastiveLoss
base_model: Alibaba-NLP/gte-modernbert-base
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_precision
- cosine_recall
- cosine_f1
- cosine_ap
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
results:
- task:
type: my-binary-classification
name: My Binary Classification
dataset:
name: Quora
type: unknown
metrics:
- type: cosine_accuracy
value: null
name: Cosine Accuracy
- type: cosine_f1
value: null
name: Cosine F1
- type: cosine_precision
value: null
name: Cosine Precision
- type: cosine_recall
value: null
name: Cosine Recall
- type: cosine_ap
value: null
name: Cosine Ap
SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the Quora csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v1")
# Run inference
sentences = [
'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
"Are Danish Sait's prank calls fake?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
#### My Binary Classification
* Evaluated with <code>scache.train.MyBinaryClassificationEvaluator</code>
| Metric | Value |
|:--------------------------|:----------|
| cosine_accuracy | 0.9023 |
| cosine_f1 | 0.9028 |
| cosine_precision | 0.8987 |
| cosine_recall | 0.9069 |
| **cosine_ap** | **0.952** |
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 323,480 training samples
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 323,480 evaluation samples
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}