|
--- |
|
base_model: mixedbread-ai/mxbai-embed-large-v1 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:580 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: In response to hypothetical economic scenarios presented by the |
|
Federal Reserve, Wells Fargo formulated a capital action plan. This was done as |
|
a part of the CCAR (Comprehensive Capital Analysis and Review) process. The scenarios |
|
tested included a hypothetical severe global recession which, at its most stressful |
|
point, reduces our Pre-Provision Net Revenue (PPNR) to negative levels for four |
|
consecutive quarters. |
|
sentences: |
|
- What is the proposed dividend per share for the shareholders of Apple Inc. for |
|
the financial year ending in 2023? |
|
- What steps has Wells Fargo undertaken to sustain in the event of a severe global |
|
recession? |
|
- What was the total net income for Intel in 2021? |
|
- source_sentence: Microsoft Corporation has been paying consistent dividends to its |
|
shareholders on a quarterly basis. The company's Board of Directors reviews the |
|
dividend policy on a regular basis and plans to continue paying quarterly dividends, |
|
subject to capital availability and financial conditions |
|
sentences: |
|
- What did Amazon.com, Inc. anticipate regarding its free cash flows in the future? |
|
- What is Tesla's outlook for 2024 in terms of vehicle production? |
|
- What is Microsoft Corporation's dividend policy? |
|
- source_sentence: In the second quarter of 2023, Tesla's automotive revenue increased |
|
by 58% compared to the same period previous year. These results were primarily |
|
driven by increased vehicle deliveries and expansion in the China market. |
|
sentences: |
|
- What action did the Federal Reserve take to address the inflation surge in 2027? |
|
- What revenue did Apple Inc. report in the first quarter of 2021? |
|
- How did Tesla's automotive revenue perform in the second quarter of 2023? |
|
- source_sentence: Intel Corporation is an American multinational corporation and |
|
technology company headquartered in Santa Clara, California. It's primarily known |
|
for designing and manufacturing semiconductors and various technology solutions, |
|
including processors for computer systems and servers, integrated digital technology |
|
platforms, and system-on-chip units for gateways. |
|
sentences: |
|
- What is Intel's main area of business? |
|
- What was the revenue growth percentage of Amazon in the second quarter of 2024? |
|
- How much capital expenditure did Amazon.com report in 2025? |
|
- source_sentence: In 2023, EnergyCorp declared a dividend of $2.5 per share. |
|
sentences: |
|
- How did Amazon’s shift to one-day prime delivery affect its operational costs |
|
in 2023? |
|
- What dividend did the EnergyCorp pay to its shareholders in 2023? |
|
- What was the profit margin of Airbus in the year 2025? |
|
model-index: |
|
- name: Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 1024 |
|
type: dim_1024 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.32307692307692304 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1938461538461538 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09846153846153843 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.941940347600734 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.927838827838828 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.928083028083028 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.32307692307692304 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1938461538461538 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09846153846153843 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9422922530434215 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9282051282051282 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9284418145956608 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.32307692307692304 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1938461538461538 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09846153846153843 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.941940347600734 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.927838827838828 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.928113553113553 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.32307692307692304 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1938461538461538 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09846153846153843 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8923076923076924 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9416654482692324 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9275641025641026 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9278846153846154 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8461538461538461 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9538461538461539 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8461538461538461 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.31794871794871793 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1938461538461538 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09846153846153843 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8461538461538461 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9538461538461539 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9221774232775186 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9012820512820513 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9016398330351819 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8153846153846154 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8153846153846154 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.32307692307692304 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19692307692307687 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09846153846153843 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8153846153846154 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9692307692307692 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9846153846153847 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9123594012651499 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8876923076923079 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8879622132253712 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 990580e27d329c7408b3741ecff85876e128e203 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'In 2023, EnergyCorp declared a dividend of $2.5 per share.', |
|
'What dividend did the EnergyCorp pay to its shareholders in 2023?', |
|
'How did Amazon’s shift to one-day prime delivery affect its operational costs in 2023?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_1024` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8923 | |
|
| cosine_accuracy@3 | 0.9692 | |
|
| cosine_accuracy@5 | 0.9692 | |
|
| cosine_accuracy@10 | 0.9846 | |
|
| cosine_precision@1 | 0.8923 | |
|
| cosine_precision@3 | 0.3231 | |
|
| cosine_precision@5 | 0.1938 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8923 | |
|
| cosine_recall@3 | 0.9692 | |
|
| cosine_recall@5 | 0.9692 | |
|
| cosine_recall@10 | 0.9846 | |
|
| cosine_ndcg@10 | 0.9419 | |
|
| cosine_mrr@10 | 0.9278 | |
|
| **cosine_map@100** | **0.9281** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8923 | |
|
| cosine_accuracy@3 | 0.9692 | |
|
| cosine_accuracy@5 | 0.9692 | |
|
| cosine_accuracy@10 | 0.9846 | |
|
| cosine_precision@1 | 0.8923 | |
|
| cosine_precision@3 | 0.3231 | |
|
| cosine_precision@5 | 0.1938 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8923 | |
|
| cosine_recall@3 | 0.9692 | |
|
| cosine_recall@5 | 0.9692 | |
|
| cosine_recall@10 | 0.9846 | |
|
| cosine_ndcg@10 | 0.9423 | |
|
| cosine_mrr@10 | 0.9282 | |
|
| **cosine_map@100** | **0.9284** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8923 | |
|
| cosine_accuracy@3 | 0.9692 | |
|
| cosine_accuracy@5 | 0.9692 | |
|
| cosine_accuracy@10 | 0.9846 | |
|
| cosine_precision@1 | 0.8923 | |
|
| cosine_precision@3 | 0.3231 | |
|
| cosine_precision@5 | 0.1938 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8923 | |
|
| cosine_recall@3 | 0.9692 | |
|
| cosine_recall@5 | 0.9692 | |
|
| cosine_recall@10 | 0.9846 | |
|
| cosine_ndcg@10 | 0.9419 | |
|
| cosine_mrr@10 | 0.9278 | |
|
| **cosine_map@100** | **0.9281** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8923 | |
|
| cosine_accuracy@3 | 0.9692 | |
|
| cosine_accuracy@5 | 0.9692 | |
|
| cosine_accuracy@10 | 0.9846 | |
|
| cosine_precision@1 | 0.8923 | |
|
| cosine_precision@3 | 0.3231 | |
|
| cosine_precision@5 | 0.1938 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8923 | |
|
| cosine_recall@3 | 0.9692 | |
|
| cosine_recall@5 | 0.9692 | |
|
| cosine_recall@10 | 0.9846 | |
|
| cosine_ndcg@10 | 0.9417 | |
|
| cosine_mrr@10 | 0.9276 | |
|
| **cosine_map@100** | **0.9279** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8462 | |
|
| cosine_accuracy@3 | 0.9538 | |
|
| cosine_accuracy@5 | 0.9692 | |
|
| cosine_accuracy@10 | 0.9846 | |
|
| cosine_precision@1 | 0.8462 | |
|
| cosine_precision@3 | 0.3179 | |
|
| cosine_precision@5 | 0.1938 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8462 | |
|
| cosine_recall@3 | 0.9538 | |
|
| cosine_recall@5 | 0.9692 | |
|
| cosine_recall@10 | 0.9846 | |
|
| cosine_ndcg@10 | 0.9222 | |
|
| cosine_mrr@10 | 0.9013 | |
|
| **cosine_map@100** | **0.9016** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.8154 | |
|
| cosine_accuracy@3 | 0.9692 | |
|
| cosine_accuracy@5 | 0.9846 | |
|
| cosine_accuracy@10 | 0.9846 | |
|
| cosine_precision@1 | 0.8154 | |
|
| cosine_precision@3 | 0.3231 | |
|
| cosine_precision@5 | 0.1969 | |
|
| cosine_precision@10 | 0.0985 | |
|
| cosine_recall@1 | 0.8154 | |
|
| cosine_recall@3 | 0.9692 | |
|
| cosine_recall@5 | 0.9846 | |
|
| cosine_recall@10 | 0.9846 | |
|
| cosine_ndcg@10 | 0.9124 | |
|
| cosine_mrr@10 | 0.8877 | |
|
| **cosine_map@100** | **0.888** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 580 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 16 tokens</li><li>mean: 44.21 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 17.5 tokens</li><li>max: 30 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------| |
|
| <code>For the fiscal year 2020, Microsoft Corporation reported a net income of $44.3 billion, showing a 13% increase from the previous year.</code> | <code>What was the net income of Microsoft Corporation for the fiscal year 2020?</code> | |
|
| <code>As of the latest financial report, Amazon has a current price to earnings ratio (P/E ratio) of 76.6.</code> | <code>What is Amazon's current P/E ratio according to their latest financial report?</code> | |
|
| <code>Microsoft Corporation posted an EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) margin of approximately 47% in 2021, showcasing strong profitability.</code> | <code>What was Microsoft Corporation's EBITDA margin in 2021?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
1024, |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:-----:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.8421 | 1 | 0.9032 | 0.8846 | 0.9033 | 0.9109 | 0.8695 | 0.9186 | |
|
| 1.6842 | 2 | 0.9121 | 0.8948 | 0.9174 | 0.9199 | 0.8777 | 0.9198 | |
|
| 2.5263 | 3 | 0.9281 | 0.9013 | 0.9202 | 0.9281 | 0.8879 | 0.9204 | |
|
| **3.3684** | **4** | **0.9281** | **0.9016** | **0.9279** | **0.9281** | **0.888** | **0.9284** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.6 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |