File size: 30,722 Bytes
90e4583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
---
base_model: mixedbread-ai/mxbai-embed-large-v1
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:580
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: In response to hypothetical economic scenarios presented by the
    Federal Reserve, Wells Fargo formulated a capital action plan. This was done as
    a part of the CCAR (Comprehensive Capital Analysis and Review) process. The scenarios
    tested included a hypothetical severe global recession which, at its most stressful
    point, reduces our Pre-Provision Net Revenue (PPNR) to negative levels for four
    consecutive quarters.
  sentences:
  - What is the proposed dividend per share for the shareholders of Apple Inc. for
    the financial year ending in 2023?
  - What steps has Wells Fargo undertaken to sustain in the event of a severe global
    recession?
  - What was the total net income for Intel in 2021?
- source_sentence: Microsoft Corporation has been paying consistent dividends to its
    shareholders on a quarterly basis. The company's Board of Directors reviews the
    dividend policy on a regular basis and plans to continue paying quarterly dividends,
    subject to capital availability and financial conditions
  sentences:
  - What did Amazon.com, Inc. anticipate regarding its free cash flows in the future?
  - What is Tesla's outlook for 2024 in terms of vehicle production?
  - What is Microsoft Corporation's dividend policy?
- source_sentence: In the second quarter of 2023, Tesla's automotive revenue increased
    by 58% compared to the same period previous year. These results were primarily
    driven by increased vehicle deliveries and expansion in the China market.
  sentences:
  - What action did the Federal Reserve take to address the inflation surge in 2027?
  - What revenue did Apple Inc. report in the first quarter of 2021?
  - How did Tesla's automotive revenue perform in the second quarter of 2023?
- source_sentence: Intel Corporation is an American multinational corporation and
    technology company headquartered in Santa Clara, California. It's primarily known
    for designing and manufacturing semiconductors and various technology solutions,
    including processors for computer systems and servers, integrated digital technology
    platforms, and system-on-chip units for gateways.
  sentences:
  - What is Intel's main area of business?
  - What was the revenue growth percentage of Amazon in the second quarter of 2024?
  - How much capital expenditure did Amazon.com report in 2025?
- source_sentence: In 2023, EnergyCorp declared a dividend of $2.5 per share.
  sentences:
  - How did Amazon’s shift to one-day prime delivery affect its operational costs
    in 2023?
  - What dividend did the EnergyCorp pay to its shareholders in 2023?
  - What was the profit margin of Airbus in the year 2025?
model-index:
- name: Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.8923076923076924
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9692307692307692
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9692307692307692
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9846153846153847
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8923076923076924
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32307692307692304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1938461538461538
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09846153846153843
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8923076923076924
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9692307692307692
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9692307692307692
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9846153846153847
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.941940347600734
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.927838827838828
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.928083028083028
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8923076923076924
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9692307692307692
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9692307692307692
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9846153846153847
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8923076923076924
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32307692307692304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1938461538461538
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09846153846153843
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8923076923076924
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9692307692307692
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9692307692307692
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9846153846153847
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9422922530434215
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9282051282051282
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9284418145956608
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8923076923076924
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9692307692307692
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9692307692307692
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9846153846153847
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8923076923076924
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32307692307692304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1938461538461538
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09846153846153843
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8923076923076924
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9692307692307692
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9692307692307692
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9846153846153847
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.941940347600734
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.927838827838828
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.928113553113553
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8923076923076924
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9692307692307692
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9692307692307692
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9846153846153847
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8923076923076924
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32307692307692304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1938461538461538
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09846153846153843
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8923076923076924
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9692307692307692
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9692307692307692
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9846153846153847
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9416654482692324
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9275641025641026
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9278846153846154
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.8461538461538461
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9538461538461539
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9692307692307692
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9846153846153847
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8461538461538461
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31794871794871793
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1938461538461538
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09846153846153843
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8461538461538461
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9538461538461539
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9692307692307692
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9846153846153847
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9221774232775186
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9012820512820513
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9016398330351819
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.8153846153846154
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9692307692307692
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9846153846153847
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9846153846153847
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8153846153846154
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32307692307692304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19692307692307687
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09846153846153843
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8153846153846154
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9692307692307692
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9846153846153847
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9846153846153847
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9123594012651499
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8876923076923079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8879622132253712
      name: Cosine Map@100
---

# Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 990580e27d329c7408b3741ecff85876e128e203 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
# Run inference
sentences = [
    'In 2023, EnergyCorp declared a dividend of $2.5 per share.',
    'What dividend did the EnergyCorp pay to its shareholders in 2023?',
    'How did Amazon’s shift to one-day prime delivery affect its operational costs in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8923     |
| cosine_accuracy@3   | 0.9692     |
| cosine_accuracy@5   | 0.9692     |
| cosine_accuracy@10  | 0.9846     |
| cosine_precision@1  | 0.8923     |
| cosine_precision@3  | 0.3231     |
| cosine_precision@5  | 0.1938     |
| cosine_precision@10 | 0.0985     |
| cosine_recall@1     | 0.8923     |
| cosine_recall@3     | 0.9692     |
| cosine_recall@5     | 0.9692     |
| cosine_recall@10    | 0.9846     |
| cosine_ndcg@10      | 0.9419     |
| cosine_mrr@10       | 0.9278     |
| **cosine_map@100**  | **0.9281** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8923     |
| cosine_accuracy@3   | 0.9692     |
| cosine_accuracy@5   | 0.9692     |
| cosine_accuracy@10  | 0.9846     |
| cosine_precision@1  | 0.8923     |
| cosine_precision@3  | 0.3231     |
| cosine_precision@5  | 0.1938     |
| cosine_precision@10 | 0.0985     |
| cosine_recall@1     | 0.8923     |
| cosine_recall@3     | 0.9692     |
| cosine_recall@5     | 0.9692     |
| cosine_recall@10    | 0.9846     |
| cosine_ndcg@10      | 0.9423     |
| cosine_mrr@10       | 0.9282     |
| **cosine_map@100**  | **0.9284** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8923     |
| cosine_accuracy@3   | 0.9692     |
| cosine_accuracy@5   | 0.9692     |
| cosine_accuracy@10  | 0.9846     |
| cosine_precision@1  | 0.8923     |
| cosine_precision@3  | 0.3231     |
| cosine_precision@5  | 0.1938     |
| cosine_precision@10 | 0.0985     |
| cosine_recall@1     | 0.8923     |
| cosine_recall@3     | 0.9692     |
| cosine_recall@5     | 0.9692     |
| cosine_recall@10    | 0.9846     |
| cosine_ndcg@10      | 0.9419     |
| cosine_mrr@10       | 0.9278     |
| **cosine_map@100**  | **0.9281** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8923     |
| cosine_accuracy@3   | 0.9692     |
| cosine_accuracy@5   | 0.9692     |
| cosine_accuracy@10  | 0.9846     |
| cosine_precision@1  | 0.8923     |
| cosine_precision@3  | 0.3231     |
| cosine_precision@5  | 0.1938     |
| cosine_precision@10 | 0.0985     |
| cosine_recall@1     | 0.8923     |
| cosine_recall@3     | 0.9692     |
| cosine_recall@5     | 0.9692     |
| cosine_recall@10    | 0.9846     |
| cosine_ndcg@10      | 0.9417     |
| cosine_mrr@10       | 0.9276     |
| **cosine_map@100**  | **0.9279** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8462     |
| cosine_accuracy@3   | 0.9538     |
| cosine_accuracy@5   | 0.9692     |
| cosine_accuracy@10  | 0.9846     |
| cosine_precision@1  | 0.8462     |
| cosine_precision@3  | 0.3179     |
| cosine_precision@5  | 0.1938     |
| cosine_precision@10 | 0.0985     |
| cosine_recall@1     | 0.8462     |
| cosine_recall@3     | 0.9538     |
| cosine_recall@5     | 0.9692     |
| cosine_recall@10    | 0.9846     |
| cosine_ndcg@10      | 0.9222     |
| cosine_mrr@10       | 0.9013     |
| **cosine_map@100**  | **0.9016** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.8154    |
| cosine_accuracy@3   | 0.9692    |
| cosine_accuracy@5   | 0.9846    |
| cosine_accuracy@10  | 0.9846    |
| cosine_precision@1  | 0.8154    |
| cosine_precision@3  | 0.3231    |
| cosine_precision@5  | 0.1969    |
| cosine_precision@10 | 0.0985    |
| cosine_recall@1     | 0.8154    |
| cosine_recall@3     | 0.9692    |
| cosine_recall@5     | 0.9846    |
| cosine_recall@10    | 0.9846    |
| cosine_ndcg@10      | 0.9124    |
| cosine_mrr@10       | 0.8877    |
| **cosine_map@100**  | **0.888** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 580 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                           |
  | details | <ul><li>min: 16 tokens</li><li>mean: 44.21 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 17.5 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                    | anchor                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
  | <code>For the fiscal year 2020, Microsoft Corporation reported a net income of $44.3 billion, showing a 13% increase from the previous year.</code>                                         | <code>What was the net income of Microsoft Corporation for the fiscal year 2020?</code>     |
  | <code>As of the latest financial report, Amazon has a current price to earnings ratio (P/E ratio) of 76.6.</code>                                                                           | <code>What is Amazon's current P/E ratio according to their latest financial report?</code> |
  | <code>Microsoft Corporation posted an EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) margin of approximately 47% in 2021, showcasing strong profitability.</code> | <code>What was Microsoft Corporation's EBITDA margin in 2021?</code>                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8421     | 1     | 0.9032                  | 0.8846                 | 0.9033                 | 0.9109                 | 0.8695                | 0.9186                 |
| 1.6842     | 2     | 0.9121                  | 0.8948                 | 0.9174                 | 0.9199                 | 0.8777                | 0.9198                 |
| 2.5263     | 3     | 0.9281                  | 0.9013                 | 0.9202                 | 0.9281                 | 0.8879                | 0.9204                 |
| **3.3684** | **4** | **0.9281**              | **0.9016**             | **0.9279**             | **0.9281**             | **0.888**             | **0.9284**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->