File size: 30,722 Bytes
90e4583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
---
base_model: mixedbread-ai/mxbai-embed-large-v1
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:580
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: In response to hypothetical economic scenarios presented by the
Federal Reserve, Wells Fargo formulated a capital action plan. This was done as
a part of the CCAR (Comprehensive Capital Analysis and Review) process. The scenarios
tested included a hypothetical severe global recession which, at its most stressful
point, reduces our Pre-Provision Net Revenue (PPNR) to negative levels for four
consecutive quarters.
sentences:
- What is the proposed dividend per share for the shareholders of Apple Inc. for
the financial year ending in 2023?
- What steps has Wells Fargo undertaken to sustain in the event of a severe global
recession?
- What was the total net income for Intel in 2021?
- source_sentence: Microsoft Corporation has been paying consistent dividends to its
shareholders on a quarterly basis. The company's Board of Directors reviews the
dividend policy on a regular basis and plans to continue paying quarterly dividends,
subject to capital availability and financial conditions
sentences:
- What did Amazon.com, Inc. anticipate regarding its free cash flows in the future?
- What is Tesla's outlook for 2024 in terms of vehicle production?
- What is Microsoft Corporation's dividend policy?
- source_sentence: In the second quarter of 2023, Tesla's automotive revenue increased
by 58% compared to the same period previous year. These results were primarily
driven by increased vehicle deliveries and expansion in the China market.
sentences:
- What action did the Federal Reserve take to address the inflation surge in 2027?
- What revenue did Apple Inc. report in the first quarter of 2021?
- How did Tesla's automotive revenue perform in the second quarter of 2023?
- source_sentence: Intel Corporation is an American multinational corporation and
technology company headquartered in Santa Clara, California. It's primarily known
for designing and manufacturing semiconductors and various technology solutions,
including processors for computer systems and servers, integrated digital technology
platforms, and system-on-chip units for gateways.
sentences:
- What is Intel's main area of business?
- What was the revenue growth percentage of Amazon in the second quarter of 2024?
- How much capital expenditure did Amazon.com report in 2025?
- source_sentence: In 2023, EnergyCorp declared a dividend of $2.5 per share.
sentences:
- How did Amazon’s shift to one-day prime delivery affect its operational costs
in 2023?
- What dividend did the EnergyCorp pay to its shareholders in 2023?
- What was the profit margin of Airbus in the year 2025?
model-index:
- name: Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.8923076923076924
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9692307692307692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9692307692307692
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9846153846153847
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8923076923076924
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32307692307692304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1938461538461538
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09846153846153843
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8923076923076924
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9692307692307692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9692307692307692
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9846153846153847
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.941940347600734
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.927838827838828
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.928083028083028
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8923076923076924
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9692307692307692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9692307692307692
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9846153846153847
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8923076923076924
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32307692307692304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1938461538461538
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09846153846153843
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8923076923076924
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9692307692307692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9692307692307692
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9846153846153847
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9422922530434215
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9282051282051282
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9284418145956608
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8923076923076924
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9692307692307692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9692307692307692
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9846153846153847
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8923076923076924
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32307692307692304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1938461538461538
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09846153846153843
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8923076923076924
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9692307692307692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9692307692307692
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9846153846153847
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.941940347600734
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.927838827838828
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.928113553113553
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8923076923076924
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9692307692307692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9692307692307692
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9846153846153847
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8923076923076924
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32307692307692304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1938461538461538
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09846153846153843
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8923076923076924
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9692307692307692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9692307692307692
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9846153846153847
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9416654482692324
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9275641025641026
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9278846153846154
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8461538461538461
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9538461538461539
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9692307692307692
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9846153846153847
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8461538461538461
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31794871794871793
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1938461538461538
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09846153846153843
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8461538461538461
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9538461538461539
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9692307692307692
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9846153846153847
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9221774232775186
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9012820512820513
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9016398330351819
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.8153846153846154
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9692307692307692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9846153846153847
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9846153846153847
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8153846153846154
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32307692307692304
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19692307692307687
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09846153846153843
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8153846153846154
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9692307692307692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9846153846153847
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9846153846153847
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9123594012651499
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8876923076923079
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8879622132253712
name: Cosine Map@100
---
# Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 990580e27d329c7408b3741ecff85876e128e203 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
# Run inference
sentences = [
'In 2023, EnergyCorp declared a dividend of $2.5 per share.',
'What dividend did the EnergyCorp pay to its shareholders in 2023?',
'How did Amazon’s shift to one-day prime delivery affect its operational costs in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8923 |
| cosine_accuracy@3 | 0.9692 |
| cosine_accuracy@5 | 0.9692 |
| cosine_accuracy@10 | 0.9846 |
| cosine_precision@1 | 0.8923 |
| cosine_precision@3 | 0.3231 |
| cosine_precision@5 | 0.1938 |
| cosine_precision@10 | 0.0985 |
| cosine_recall@1 | 0.8923 |
| cosine_recall@3 | 0.9692 |
| cosine_recall@5 | 0.9692 |
| cosine_recall@10 | 0.9846 |
| cosine_ndcg@10 | 0.9419 |
| cosine_mrr@10 | 0.9278 |
| **cosine_map@100** | **0.9281** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8923 |
| cosine_accuracy@3 | 0.9692 |
| cosine_accuracy@5 | 0.9692 |
| cosine_accuracy@10 | 0.9846 |
| cosine_precision@1 | 0.8923 |
| cosine_precision@3 | 0.3231 |
| cosine_precision@5 | 0.1938 |
| cosine_precision@10 | 0.0985 |
| cosine_recall@1 | 0.8923 |
| cosine_recall@3 | 0.9692 |
| cosine_recall@5 | 0.9692 |
| cosine_recall@10 | 0.9846 |
| cosine_ndcg@10 | 0.9423 |
| cosine_mrr@10 | 0.9282 |
| **cosine_map@100** | **0.9284** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8923 |
| cosine_accuracy@3 | 0.9692 |
| cosine_accuracy@5 | 0.9692 |
| cosine_accuracy@10 | 0.9846 |
| cosine_precision@1 | 0.8923 |
| cosine_precision@3 | 0.3231 |
| cosine_precision@5 | 0.1938 |
| cosine_precision@10 | 0.0985 |
| cosine_recall@1 | 0.8923 |
| cosine_recall@3 | 0.9692 |
| cosine_recall@5 | 0.9692 |
| cosine_recall@10 | 0.9846 |
| cosine_ndcg@10 | 0.9419 |
| cosine_mrr@10 | 0.9278 |
| **cosine_map@100** | **0.9281** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8923 |
| cosine_accuracy@3 | 0.9692 |
| cosine_accuracy@5 | 0.9692 |
| cosine_accuracy@10 | 0.9846 |
| cosine_precision@1 | 0.8923 |
| cosine_precision@3 | 0.3231 |
| cosine_precision@5 | 0.1938 |
| cosine_precision@10 | 0.0985 |
| cosine_recall@1 | 0.8923 |
| cosine_recall@3 | 0.9692 |
| cosine_recall@5 | 0.9692 |
| cosine_recall@10 | 0.9846 |
| cosine_ndcg@10 | 0.9417 |
| cosine_mrr@10 | 0.9276 |
| **cosine_map@100** | **0.9279** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8462 |
| cosine_accuracy@3 | 0.9538 |
| cosine_accuracy@5 | 0.9692 |
| cosine_accuracy@10 | 0.9846 |
| cosine_precision@1 | 0.8462 |
| cosine_precision@3 | 0.3179 |
| cosine_precision@5 | 0.1938 |
| cosine_precision@10 | 0.0985 |
| cosine_recall@1 | 0.8462 |
| cosine_recall@3 | 0.9538 |
| cosine_recall@5 | 0.9692 |
| cosine_recall@10 | 0.9846 |
| cosine_ndcg@10 | 0.9222 |
| cosine_mrr@10 | 0.9013 |
| **cosine_map@100** | **0.9016** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.8154 |
| cosine_accuracy@3 | 0.9692 |
| cosine_accuracy@5 | 0.9846 |
| cosine_accuracy@10 | 0.9846 |
| cosine_precision@1 | 0.8154 |
| cosine_precision@3 | 0.3231 |
| cosine_precision@5 | 0.1969 |
| cosine_precision@10 | 0.0985 |
| cosine_recall@1 | 0.8154 |
| cosine_recall@3 | 0.9692 |
| cosine_recall@5 | 0.9846 |
| cosine_recall@10 | 0.9846 |
| cosine_ndcg@10 | 0.9124 |
| cosine_mrr@10 | 0.8877 |
| **cosine_map@100** | **0.888** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 580 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 16 tokens</li><li>mean: 44.21 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 17.5 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
| <code>For the fiscal year 2020, Microsoft Corporation reported a net income of $44.3 billion, showing a 13% increase from the previous year.</code> | <code>What was the net income of Microsoft Corporation for the fiscal year 2020?</code> |
| <code>As of the latest financial report, Amazon has a current price to earnings ratio (P/E ratio) of 76.6.</code> | <code>What is Amazon's current P/E ratio according to their latest financial report?</code> |
| <code>Microsoft Corporation posted an EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) margin of approximately 47% in 2021, showcasing strong profitability.</code> | <code>What was Microsoft Corporation's EBITDA margin in 2021?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8421 | 1 | 0.9032 | 0.8846 | 0.9033 | 0.9109 | 0.8695 | 0.9186 |
| 1.6842 | 2 | 0.9121 | 0.8948 | 0.9174 | 0.9199 | 0.8777 | 0.9198 |
| 2.5263 | 3 | 0.9281 | 0.9013 | 0.9202 | 0.9281 | 0.8879 | 0.9204 |
| **3.3684** | **4** | **0.9281** | **0.9016** | **0.9279** | **0.9281** | **0.888** | **0.9284** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |