|
--- |
|
base_model: distilbert/distilbert-base-multilingual-cased |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:654495 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: সম্পূৰ্ণৰূপে ভিন্ন ধৰণৰ পেৰাচুট আৰু এটা উড়ন্ত পক্ষীৰ মাজত, আহ্, |
|
শব্দৰ তিনিগুণ বেগত, ঘণ্টাৰ ২২, ০০০ মাইলত। |
|
sentences: |
|
- ঘণ্টাৰ ২০, ০০০ কিলোমিটাৰতকৈ অধিক গতিত উড়ে। |
|
- মোৰ ঘৰত দুটা কম্পিউটাৰ আছে। |
|
- সকলো ক্ৰীড়াৰ নাম ক্ৰীড়াত ব্যৱহাৰ কৰা এটা সঁজুলিৰ নামেৰে নামকৰণ কৰা হয়। |
|
- source_sentence: আৰু তাৰ পিছত মই তেওঁক যাবলৈ শুনিছিলোঁ, সেয়েহে মই এতিয়াও মোৰ কাম |
|
শেষ কৰি আছো। |
|
sentences: |
|
- মই আজি যিটো কৰিব লাগিব সেয়া কৰি আছো। |
|
- '"Bato (বা" "vato" ") এটা স্পেনিছ শব্দ যাৰ অৰ্থ হৈছে" "পুৰুষ" "বা" "বন্ধু" "।"' |
|
- পিতৃ-মাতৃয়ে ঘৰত থাকিল। |
|
- source_sentence: মই কেৱল বুজাবলৈ চেষ্টা কৰিছিলোঁ। |
|
sentences: |
|
- মই বুজিবলৈ চেষ্টা কৰিছিলোঁ। |
|
- মই আন কেইবাটাও প্ৰস্তাৱ দিবলৈ আহিছিলোঁ। |
|
- প্ৰেমিক নামৰ এজন খেতিয়কে নিজৰ হত্যাৰ আঁচনি তৈয়াৰ কৰোতে ঘাসপূৰ্ণ স্থানত লুকুৱাই |
|
থৈ যায়। |
|
- source_sentence: আৰু, উম, যদি এইটো বাঢ়ি আহিব আৰু কেৱল বাঢ়ি আহিব তেতিয়াহ 'লে' |
|
whish 'হ' ব, আৰু যেনেকৈ ই আপোনাৰ মূৰটো বন্ধ কৰি দিব। |
|
sentences: |
|
- প্ৰাৰম্ভিক শিক্ষা লাভ কৰা আৰু বয়সস্থ ল 'ৰা-ছোৱালীয়ে প্ৰায়ে ভৱিষ্যতৰ বিষয়ে |
|
সপোন দেখে। |
|
- তেওঁলোকে মোৰ ওচৰলৈ কিয় আহিছে বুলি প্ৰশ্ন কৰিলে। |
|
- যদি কোনো ধৰণৰ পৰিৱৰ্তন হয়, তেনেহ 'লে তাৰ লগত এক শব্দ বাঢ়িব পাৰে। |
|
- source_sentence: মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা |
|
আছিল |
|
sentences: |
|
- মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল |
|
লাগিল। |
|
- Shannon এ বাৰ্তা উপেক্ষা কৰিছে। |
|
- মানুহজনে ষ্টক এক্সচেঞ্জত লেনদেনৰ বিষয়ে জানিবলৈ চেষ্টা কৰিছিল। |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilbert-base-multilingual-cased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: pritamdeka/stsb assamese translated dev |
|
type: pritamdeka/stsb-assamese-translated-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7169579983340281 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7220987460972806 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7380110422340219 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7452082040848071 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7386577662108481 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7458961406429292 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6480820840127198 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6478256799308721 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7386577662108481 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7458961406429292 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: pritamdeka/stsb assamese translated test |
|
type: pritamdeka/stsb-assamese-translated-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.656822131496386 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6621886312595516 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6675496858061083 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6722470705036974 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6681862838868354 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6727345795749732 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5691955650489428 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.570867962692759 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6681862838868354 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6727345795749732 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilbert-base-multilingual-cased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) <!-- at revision 45c032ab32cc946ad88a166f7cb282f58c753c2e --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1") |
|
# Run inference |
|
sentences = [ |
|
'মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল', |
|
'মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল লাগিল।', |
|
'Shannon এ বাৰ্তা উপেক্ষা কৰিছে।', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `pritamdeka/stsb-assamese-translated-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.717 | |
|
| **spearman_cosine** | **0.7221** | |
|
| pearson_manhattan | 0.738 | |
|
| spearman_manhattan | 0.7452 | |
|
| pearson_euclidean | 0.7387 | |
|
| spearman_euclidean | 0.7459 | |
|
| pearson_dot | 0.6481 | |
|
| spearman_dot | 0.6478 | |
|
| pearson_max | 0.7387 | |
|
| spearman_max | 0.7459 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `pritamdeka/stsb-assamese-translated-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6568 | |
|
| **spearman_cosine** | **0.6622** | |
|
| pearson_manhattan | 0.6675 | |
|
| spearman_manhattan | 0.6722 | |
|
| pearson_euclidean | 0.6682 | |
|
| spearman_euclidean | 0.6727 | |
|
| pearson_dot | 0.5692 | |
|
| spearman_dot | 0.5709 | |
|
| pearson_max | 0.6682 | |
|
| spearman_max | 0.6727 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine | |
|
|:----------:|:---------:|:-------------:|:----------:|:-------------------------------------------------------:|:--------------------------------------------------------:| |
|
| 0 | 0 | - | - | 0.5489 | - | |
|
| 0.0489 | 500 | 1.9387 | 1.7308 | 0.6808 | - | |
|
| 0.0978 | 1000 | 1.0503 | 1.7373 | 0.6689 | - | |
|
| 0.1467 | 1500 | 0.92 | 1.5838 | 0.6761 | - | |
|
| 0.1956 | 2000 | 0.8754 | 1.4807 | 0.6518 | - | |
|
| 0.2445 | 2500 | 0.7988 | 1.3797 | 0.6853 | - | |
|
| 0.2933 | 3000 | 0.7606 | 1.3713 | 0.7108 | - | |
|
| 0.3422 | 3500 | 0.7228 | 1.2510 | 0.6677 | - | |
|
| 0.3911 | 4000 | 0.688 | 1.2374 | 0.6734 | - | |
|
| 0.4400 | 4500 | 0.6992 | 1.2173 | 0.6891 | - | |
|
| 0.4889 | 5000 | 0.6108 | 1.1638 | 0.7017 | - | |
|
| 0.5378 | 5500 | 0.612 | 1.0815 | 0.7102 | - | |
|
| 0.5867 | 6000 | 0.6259 | 1.0664 | 0.7202 | - | |
|
| 0.6356 | 6500 | 0.5863 | 1.0464 | 0.7047 | - | |
|
| 0.6845 | 7000 | 0.5941 | 1.0111 | 0.7101 | - | |
|
| 0.7334 | 7500 | 0.5436 | 1.0023 | 0.7171 | - | |
|
| 0.7822 | 8000 | 0.555 | 0.9633 | 0.7202 | - | |
|
| 0.8311 | 8500 | 0.5466 | 0.9651 | 0.7279 | - | |
|
| 0.8800 | 9000 | 0.5326 | 0.9611 | 0.7262 | - | |
|
| 0.9289 | 9500 | 0.5055 | 0.9313 | 0.7276 | - | |
|
| **0.9778** | **10000** | **0.4828** | **0.9172** | **0.7221** | **-** | |
|
| 1.0 | 10227 | - | - | - | 0.6622 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |