pritamdeka commited on
Commit
e1bd9f5
1 Parent(s): e6fce0e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: distilbert/distilbert-base-multilingual-cased
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:654495
24
+ - loss:MultipleNegativesRankingLoss
25
+ widget:
26
+ - source_sentence: সম্পূৰ্ণৰূপে ভিন্ন ধৰণৰ পেৰাচুট আৰু এটা উড়ন্ত পক্ষীৰ মাজত, আহ্,
27
+ শব্দৰ তিনিগুণ বেগত, ঘণ্টাৰ ২২, ০০০ মাইলত।
28
+ sentences:
29
+ - ঘণ্টাৰ ২০, ০০০ কিলোমিটাৰতকৈ অধিক গতিত উড়ে।
30
+ - মোৰ ঘৰত দুটা কম্পিউটাৰ আছে।
31
+ - সকলো ক্ৰীড়াৰ নাম ক্ৰীড়াত ব্যৱহাৰ কৰা এটা সঁজুলিৰ নামেৰে নামকৰণ কৰা হয়।
32
+ - source_sentence: আৰু তাৰ পিছত মই তেওঁক যাবলৈ শুনিছিলোঁ, সেয়েহে মই এতিয়াও মোৰ কাম
33
+ শেষ কৰি আছো।
34
+ sentences:
35
+ - মই আজি যিটো কৰিব লাগিব সেয়া কৰি আছো।
36
+ - '"Bato (বা" "vato" ") এটা স্পেনিছ শব্দ যাৰ অৰ্থ হৈছে" "পুৰুষ" "বা" "বন্ধু" "।"'
37
+ - পিতৃ-মাতৃয়ে ঘৰত থাকিল।
38
+ - source_sentence: মই কেৱল বুজাবলৈ চেষ্টা কৰিছিলোঁ।
39
+ sentences:
40
+ - মই বুজিবলৈ চেষ্টা কৰিছিলোঁ।
41
+ - মই আন কেইবাটাও প্ৰস্তাৱ দিবলৈ আহিছিলোঁ।
42
+ - প্ৰেমিক নামৰ এজন খেতিয়কে নিজৰ হত্যাৰ আঁচনি তৈয়াৰ কৰোতে ঘাসপূৰ্ণ স্থানত লুকুৱাই
43
+ থৈ যায়।
44
+ - source_sentence: আৰু, উম, যদি এইটো বাঢ়ি আহিব আৰু কেৱল বাঢ়ি আহিব তেতিয়াহ 'লে'
45
+ whish 'হ' ব, আৰু যেনেকৈ ই আপোনাৰ মূৰটো বন্ধ কৰি দিব।
46
+ sentences:
47
+ - প্ৰাৰম্ভিক শিক্ষা লাভ কৰা আৰু বয়সস্থ ল 'ৰা-ছোৱালীয়ে প্ৰায়ে ভৱিষ্যতৰ বিষয়ে
48
+ সপোন দেখে।
49
+ - তেওঁলোকে মোৰ ওচৰলৈ কিয় আহিছে বুলি প্ৰশ্ন কৰিলে।
50
+ - যদি কোনো ধৰণৰ পৰিৱৰ্তন হয়, তেনেহ 'লে তাৰ লগত এক শব্দ বাঢ়িব পাৰে।
51
+ - source_sentence: মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা
52
+ আছিল
53
+ sentences:
54
+ - মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল
55
+ লাগিল।
56
+ - Shannon এ বাৰ্তা উপেক্ষা কৰিছে।
57
+ - মানুহজনে ষ্টক এক্সচেঞ্জত লেনদেনৰ বিষয়ে জানিবলৈ চেষ্টা কৰিছিল।
58
+ model-index:
59
+ - name: SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: pritamdeka/stsb assamese translated dev
66
+ type: pritamdeka/stsb-assamese-translated-dev
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.7169579983340281
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.7220987460972806
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.7380110422340219
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.7452082040848071
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.7386577662108481
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.7458961406429292
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.6480820840127198
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.6478256799308721
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.7386577662108481
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.7458961406429292
97
+ name: Spearman Max
98
+ - task:
99
+ type: semantic-similarity
100
+ name: Semantic Similarity
101
+ dataset:
102
+ name: pritamdeka/stsb assamese translated test
103
+ type: pritamdeka/stsb-assamese-translated-test
104
+ metrics:
105
+ - type: pearson_cosine
106
+ value: 0.656822131496386
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.6621886312595516
110
+ name: Spearman Cosine
111
+ - type: pearson_manhattan
112
+ value: 0.6675496858061083
113
+ name: Pearson Manhattan
114
+ - type: spearman_manhattan
115
+ value: 0.6722470705036974
116
+ name: Spearman Manhattan
117
+ - type: pearson_euclidean
118
+ value: 0.6681862838868354
119
+ name: Pearson Euclidean
120
+ - type: spearman_euclidean
121
+ value: 0.6727345795749732
122
+ name: Spearman Euclidean
123
+ - type: pearson_dot
124
+ value: 0.5691955650489428
125
+ name: Pearson Dot
126
+ - type: spearman_dot
127
+ value: 0.570867962692759
128
+ name: Spearman Dot
129
+ - type: pearson_max
130
+ value: 0.6681862838868354
131
+ name: Pearson Max
132
+ - type: spearman_max
133
+ value: 0.6727345795749732
134
+ name: Spearman Max
135
+ ---
136
+
137
+ # SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
138
+
139
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
140
+
141
+ ## Model Details
142
+
143
+ ### Model Description
144
+ - **Model Type:** Sentence Transformer
145
+ - **Base model:** [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) <!-- at revision 45c032ab32cc946ad88a166f7cb282f58c753c2e -->
146
+ - **Maximum Sequence Length:** 512 tokens
147
+ - **Output Dimensionality:** 768 tokens
148
+ - **Similarity Function:** Cosine Similarity
149
+ <!-- - **Training Dataset:** Unknown -->
150
+ <!-- - **Language:** Unknown -->
151
+ <!-- - **License:** Unknown -->
152
+
153
+ ### Model Sources
154
+
155
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
156
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
157
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
158
+
159
+ ### Full Model Architecture
160
+
161
+ ```
162
+ SentenceTransformer(
163
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
164
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
165
+ )
166
+ ```
167
+
168
+ ## Usage
169
+
170
+ ### Direct Usage (Sentence Transformers)
171
+
172
+ First install the Sentence Transformers library:
173
+
174
+ ```bash
175
+ pip install -U sentence-transformers
176
+ ```
177
+
178
+ Then you can load this model and run inference.
179
+ ```python
180
+ from sentence_transformers import SentenceTransformer
181
+
182
+ # Download from the 🤗 Hub
183
+ model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1")
184
+ # Run inference
185
+ sentences = [
186
+ 'মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল',
187
+ 'মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল লাগিল।',
188
+ 'Shannon এ বাৰ্তা উপেক্ষা কৰিছে।',
189
+ ]
190
+ embeddings = model.encode(sentences)
191
+ print(embeddings.shape)
192
+ # [3, 768]
193
+
194
+ # Get the similarity scores for the embeddings
195
+ similarities = model.similarity(embeddings, embeddings)
196
+ print(similarities.shape)
197
+ # [3, 3]
198
+ ```
199
+
200
+ <!--
201
+ ### Direct Usage (Transformers)
202
+
203
+ <details><summary>Click to see the direct usage in Transformers</summary>
204
+
205
+ </details>
206
+ -->
207
+
208
+ <!--
209
+ ### Downstream Usage (Sentence Transformers)
210
+
211
+ You can finetune this model on your own dataset.
212
+
213
+ <details><summary>Click to expand</summary>
214
+
215
+ </details>
216
+ -->
217
+
218
+ <!--
219
+ ### Out-of-Scope Use
220
+
221
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
222
+ -->
223
+
224
+ ## Evaluation
225
+
226
+ ### Metrics
227
+
228
+ #### Semantic Similarity
229
+ * Dataset: `pritamdeka/stsb-assamese-translated-dev`
230
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
231
+
232
+ | Metric | Value |
233
+ |:--------------------|:-----------|
234
+ | pearson_cosine | 0.717 |
235
+ | **spearman_cosine** | **0.7221** |
236
+ | pearson_manhattan | 0.738 |
237
+ | spearman_manhattan | 0.7452 |
238
+ | pearson_euclidean | 0.7387 |
239
+ | spearman_euclidean | 0.7459 |
240
+ | pearson_dot | 0.6481 |
241
+ | spearman_dot | 0.6478 |
242
+ | pearson_max | 0.7387 |
243
+ | spearman_max | 0.7459 |
244
+
245
+ #### Semantic Similarity
246
+ * Dataset: `pritamdeka/stsb-assamese-translated-test`
247
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
248
+
249
+ | Metric | Value |
250
+ |:--------------------|:-----------|
251
+ | pearson_cosine | 0.6568 |
252
+ | **spearman_cosine** | **0.6622** |
253
+ | pearson_manhattan | 0.6675 |
254
+ | spearman_manhattan | 0.6722 |
255
+ | pearson_euclidean | 0.6682 |
256
+ | spearman_euclidean | 0.6727 |
257
+ | pearson_dot | 0.5692 |
258
+ | spearman_dot | 0.5709 |
259
+ | pearson_max | 0.6682 |
260
+ | spearman_max | 0.6727 |
261
+
262
+ <!--
263
+ ## Bias, Risks and Limitations
264
+
265
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
266
+ -->
267
+
268
+ <!--
269
+ ### Recommendations
270
+
271
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
272
+ -->
273
+
274
+ ## Training Details
275
+
276
+ ### Training Hyperparameters
277
+ #### Non-Default Hyperparameters
278
+
279
+ - `eval_strategy`: steps
280
+ - `per_device_train_batch_size`: 64
281
+ - `per_device_eval_batch_size`: 64
282
+ - `num_train_epochs`: 1
283
+ - `warmup_ratio`: 0.1
284
+ - `fp16`: True
285
+ - `load_best_model_at_end`: True
286
+ - `batch_sampler`: no_duplicates
287
+
288
+ #### All Hyperparameters
289
+ <details><summary>Click to expand</summary>
290
+
291
+ - `overwrite_output_dir`: False
292
+ - `do_predict`: False
293
+ - `eval_strategy`: steps
294
+ - `prediction_loss_only`: True
295
+ - `per_device_train_batch_size`: 64
296
+ - `per_device_eval_batch_size`: 64
297
+ - `per_gpu_train_batch_size`: None
298
+ - `per_gpu_eval_batch_size`: None
299
+ - `gradient_accumulation_steps`: 1
300
+ - `eval_accumulation_steps`: None
301
+ - `learning_rate`: 5e-05
302
+ - `weight_decay`: 0.0
303
+ - `adam_beta1`: 0.9
304
+ - `adam_beta2`: 0.999
305
+ - `adam_epsilon`: 1e-08
306
+ - `max_grad_norm`: 1.0
307
+ - `num_train_epochs`: 1
308
+ - `max_steps`: -1
309
+ - `lr_scheduler_type`: linear
310
+ - `lr_scheduler_kwargs`: {}
311
+ - `warmup_ratio`: 0.1
312
+ - `warmup_steps`: 0
313
+ - `log_level`: passive
314
+ - `log_level_replica`: warning
315
+ - `log_on_each_node`: True
316
+ - `logging_nan_inf_filter`: True
317
+ - `save_safetensors`: True
318
+ - `save_on_each_node`: False
319
+ - `save_only_model`: False
320
+ - `restore_callback_states_from_checkpoint`: False
321
+ - `no_cuda`: False
322
+ - `use_cpu`: False
323
+ - `use_mps_device`: False
324
+ - `seed`: 42
325
+ - `data_seed`: None
326
+ - `jit_mode_eval`: False
327
+ - `use_ipex`: False
328
+ - `bf16`: False
329
+ - `fp16`: True
330
+ - `fp16_opt_level`: O1
331
+ - `half_precision_backend`: auto
332
+ - `bf16_full_eval`: False
333
+ - `fp16_full_eval`: False
334
+ - `tf32`: None
335
+ - `local_rank`: 0
336
+ - `ddp_backend`: None
337
+ - `tpu_num_cores`: None
338
+ - `tpu_metrics_debug`: False
339
+ - `debug`: []
340
+ - `dataloader_drop_last`: False
341
+ - `dataloader_num_workers`: 0
342
+ - `dataloader_prefetch_factor`: None
343
+ - `past_index`: -1
344
+ - `disable_tqdm`: False
345
+ - `remove_unused_columns`: True
346
+ - `label_names`: None
347
+ - `load_best_model_at_end`: True
348
+ - `ignore_data_skip`: False
349
+ - `fsdp`: []
350
+ - `fsdp_min_num_params`: 0
351
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
352
+ - `fsdp_transformer_layer_cls_to_wrap`: None
353
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
354
+ - `deepspeed`: None
355
+ - `label_smoothing_factor`: 0.0
356
+ - `optim`: adamw_torch
357
+ - `optim_args`: None
358
+ - `adafactor`: False
359
+ - `group_by_length`: False
360
+ - `length_column_name`: length
361
+ - `ddp_find_unused_parameters`: None
362
+ - `ddp_bucket_cap_mb`: None
363
+ - `ddp_broadcast_buffers`: False
364
+ - `dataloader_pin_memory`: True
365
+ - `dataloader_persistent_workers`: False
366
+ - `skip_memory_metrics`: True
367
+ - `use_legacy_prediction_loop`: False
368
+ - `push_to_hub`: False
369
+ - `resume_from_checkpoint`: None
370
+ - `hub_model_id`: None
371
+ - `hub_strategy`: every_save
372
+ - `hub_private_repo`: False
373
+ - `hub_always_push`: False
374
+ - `gradient_checkpointing`: False
375
+ - `gradient_checkpointing_kwargs`: None
376
+ - `include_inputs_for_metrics`: False
377
+ - `eval_do_concat_batches`: True
378
+ - `fp16_backend`: auto
379
+ - `push_to_hub_model_id`: None
380
+ - `push_to_hub_organization`: None
381
+ - `mp_parameters`:
382
+ - `auto_find_batch_size`: False
383
+ - `full_determinism`: False
384
+ - `torchdynamo`: None
385
+ - `ray_scope`: last
386
+ - `ddp_timeout`: 1800
387
+ - `torch_compile`: False
388
+ - `torch_compile_backend`: None
389
+ - `torch_compile_mode`: None
390
+ - `dispatch_batches`: None
391
+ - `split_batches`: None
392
+ - `include_tokens_per_second`: False
393
+ - `include_num_input_tokens_seen`: False
394
+ - `neftune_noise_alpha`: None
395
+ - `optim_target_modules`: None
396
+ - `batch_eval_metrics`: False
397
+ - `eval_on_start`: False
398
+ - `batch_sampler`: no_duplicates
399
+ - `multi_dataset_batch_sampler`: proportional
400
+
401
+ </details>
402
+
403
+ ### Training Logs
404
+ | Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
405
+ |:----------:|:---------:|:-------------:|:----------:|:-------------------------------------------------------:|:--------------------------------------------------------:|
406
+ | 0 | 0 | - | - | 0.5489 | - |
407
+ | 0.0489 | 500 | 1.9387 | 1.7308 | 0.6808 | - |
408
+ | 0.0978 | 1000 | 1.0503 | 1.7373 | 0.6689 | - |
409
+ | 0.1467 | 1500 | 0.92 | 1.5838 | 0.6761 | - |
410
+ | 0.1956 | 2000 | 0.8754 | 1.4807 | 0.6518 | - |
411
+ | 0.2445 | 2500 | 0.7988 | 1.3797 | 0.6853 | - |
412
+ | 0.2933 | 3000 | 0.7606 | 1.3713 | 0.7108 | - |
413
+ | 0.3422 | 3500 | 0.7228 | 1.2510 | 0.6677 | - |
414
+ | 0.3911 | 4000 | 0.688 | 1.2374 | 0.6734 | - |
415
+ | 0.4400 | 4500 | 0.6992 | 1.2173 | 0.6891 | - |
416
+ | 0.4889 | 5000 | 0.6108 | 1.1638 | 0.7017 | - |
417
+ | 0.5378 | 5500 | 0.612 | 1.0815 | 0.7102 | - |
418
+ | 0.5867 | 6000 | 0.6259 | 1.0664 | 0.7202 | - |
419
+ | 0.6356 | 6500 | 0.5863 | 1.0464 | 0.7047 | - |
420
+ | 0.6845 | 7000 | 0.5941 | 1.0111 | 0.7101 | - |
421
+ | 0.7334 | 7500 | 0.5436 | 1.0023 | 0.7171 | - |
422
+ | 0.7822 | 8000 | 0.555 | 0.9633 | 0.7202 | - |
423
+ | 0.8311 | 8500 | 0.5466 | 0.9651 | 0.7279 | - |
424
+ | 0.8800 | 9000 | 0.5326 | 0.9611 | 0.7262 | - |
425
+ | 0.9289 | 9500 | 0.5055 | 0.9313 | 0.7276 | - |
426
+ | **0.9778** | **10000** | **0.4828** | **0.9172** | **0.7221** | **-** |
427
+ | 1.0 | 10227 | - | - | - | 0.6622 |
428
+
429
+ * The bold row denotes the saved checkpoint.
430
+
431
+ ### Framework Versions
432
+ - Python: 3.10.12
433
+ - Sentence Transformers: 3.0.1
434
+ - Transformers: 4.42.4
435
+ - PyTorch: 2.3.1+cu121
436
+ - Accelerate: 0.32.1
437
+ - Datasets: 2.20.0
438
+ - Tokenizers: 0.19.1
439
+
440
+ ## Citation
441
+
442
+ ### BibTeX
443
+
444
+ #### Sentence Transformers
445
+ ```bibtex
446
+ @inproceedings{reimers-2019-sentence-bert,
447
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
448
+ author = "Reimers, Nils and Gurevych, Iryna",
449
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
450
+ month = "11",
451
+ year = "2019",
452
+ publisher = "Association for Computational Linguistics",
453
+ url = "https://arxiv.org/abs/1908.10084",
454
+ }
455
+ ```
456
+
457
+ #### MultipleNegativesRankingLoss
458
+ ```bibtex
459
+ @misc{henderson2017efficient,
460
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
461
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
462
+ year={2017},
463
+ eprint={1705.00652},
464
+ archivePrefix={arXiv},
465
+ primaryClass={cs.CL}
466
+ }
467
+ ```
468
+
469
+ <!--
470
+ ## Glossary
471
+
472
+ *Clearly define terms in order to be accessible across audiences.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Authors
477
+
478
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Contact
483
+
484
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
485
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/training_nli_v2_distilbert-distilbert-base-multilingual-cased-2024-07-17_18-23-02/final",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_past": true,
17
+ "pad_token_id": 0,
18
+ "qa_dropout": 0.1,
19
+ "seq_classif_dropout": 0.2,
20
+ "sinusoidal_pos_embds": false,
21
+ "tie_weights_": true,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.42.4",
24
+ "vocab_size": 119547
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:889aea5cebb8fcda150d279cb4147adb1db46ca2e57679bb212046146e3c3cc7
3
+ size 538947416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff