pritamdeka
commited on
Commit
•
e1bd9f5
1
Parent(s):
e6fce0e
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +485 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: distilbert/distilbert-base-multilingual-cased
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
metrics:
|
7 |
+
- pearson_cosine
|
8 |
+
- spearman_cosine
|
9 |
+
- pearson_manhattan
|
10 |
+
- spearman_manhattan
|
11 |
+
- pearson_euclidean
|
12 |
+
- spearman_euclidean
|
13 |
+
- pearson_dot
|
14 |
+
- spearman_dot
|
15 |
+
- pearson_max
|
16 |
+
- spearman_max
|
17 |
+
pipeline_tag: sentence-similarity
|
18 |
+
tags:
|
19 |
+
- sentence-transformers
|
20 |
+
- sentence-similarity
|
21 |
+
- feature-extraction
|
22 |
+
- generated_from_trainer
|
23 |
+
- dataset_size:654495
|
24 |
+
- loss:MultipleNegativesRankingLoss
|
25 |
+
widget:
|
26 |
+
- source_sentence: সম্পূৰ্ণৰূপে ভিন্ন ধৰণৰ পেৰাচুট আৰু এটা উড়ন্ত পক্ষীৰ মাজত, আহ্,
|
27 |
+
শব্দৰ তিনিগুণ বেগত, ঘণ্টাৰ ২২, ০০০ মাইলত।
|
28 |
+
sentences:
|
29 |
+
- ঘণ্টাৰ ২০, ০০০ কিলোমিটাৰতকৈ অধিক গতিত উড়ে।
|
30 |
+
- মোৰ ঘৰত দুটা কম্পিউটাৰ আছে।
|
31 |
+
- সকলো ক্ৰীড়াৰ নাম ক্ৰীড়াত ব্যৱহাৰ কৰা এটা সঁজুলিৰ নামেৰে নামকৰণ কৰা হয়।
|
32 |
+
- source_sentence: আৰু তাৰ পিছত মই তেওঁক যাবলৈ শুনিছিলোঁ, সেয়েহে মই এতিয়াও মোৰ কাম
|
33 |
+
শেষ কৰি আছো।
|
34 |
+
sentences:
|
35 |
+
- মই আজি যিটো কৰিব লাগিব সেয়া কৰি আছো।
|
36 |
+
- '"Bato (বা" "vato" ") এটা স্পেনিছ শব্দ যাৰ অৰ্থ হৈছে" "পুৰুষ" "বা" "বন্ধু" "।"'
|
37 |
+
- পিতৃ-মাতৃয়ে ঘৰত থাকিল।
|
38 |
+
- source_sentence: মই কেৱল বুজাবলৈ চেষ্টা কৰিছিলোঁ।
|
39 |
+
sentences:
|
40 |
+
- মই বুজিবলৈ চেষ্টা কৰিছিলোঁ।
|
41 |
+
- মই আন কেইবাটাও প্ৰস্তাৱ দিবলৈ আহিছিলোঁ।
|
42 |
+
- প্ৰেমিক নামৰ এজন খেতিয়কে নিজৰ হত্যাৰ আঁচনি তৈয়াৰ কৰোতে ঘাসপূৰ্ণ স্থানত লুকুৱাই
|
43 |
+
থৈ যায়।
|
44 |
+
- source_sentence: আৰু, উম, যদি এইটো বাঢ়ি আহিব আৰু কেৱল বাঢ়ি আহিব তেতিয়াহ 'লে'
|
45 |
+
whish 'হ' ব, আৰু যেনেকৈ ই আপোনাৰ মূৰটো বন্ধ কৰি দিব।
|
46 |
+
sentences:
|
47 |
+
- প্ৰাৰম্ভিক শিক্ষা লাভ কৰা আৰু বয়সস্থ ল 'ৰা-ছোৱালীয়ে প্ৰায়ে ভৱিষ্যতৰ বিষয়ে
|
48 |
+
সপোন দেখে।
|
49 |
+
- তেওঁলোকে মোৰ ওচৰলৈ কিয় আহিছে বুলি প্ৰশ্ন কৰিলে।
|
50 |
+
- যদি কোনো ধৰণৰ পৰিৱৰ্তন হয়, তেনেহ 'লে তাৰ লগত এক শব্দ বাঢ়িব পাৰে।
|
51 |
+
- source_sentence: মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা
|
52 |
+
আছিল
|
53 |
+
sentences:
|
54 |
+
- মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল
|
55 |
+
লাগিল।
|
56 |
+
- Shannon এ বাৰ্তা উপেক্ষা কৰিছে।
|
57 |
+
- মানুহজনে ষ্টক এক্সচেঞ্জত লেনদেনৰ বিষয়ে জানিবলৈ চেষ্টা কৰিছিল।
|
58 |
+
model-index:
|
59 |
+
- name: SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
|
60 |
+
results:
|
61 |
+
- task:
|
62 |
+
type: semantic-similarity
|
63 |
+
name: Semantic Similarity
|
64 |
+
dataset:
|
65 |
+
name: pritamdeka/stsb assamese translated dev
|
66 |
+
type: pritamdeka/stsb-assamese-translated-dev
|
67 |
+
metrics:
|
68 |
+
- type: pearson_cosine
|
69 |
+
value: 0.7169579983340281
|
70 |
+
name: Pearson Cosine
|
71 |
+
- type: spearman_cosine
|
72 |
+
value: 0.7220987460972806
|
73 |
+
name: Spearman Cosine
|
74 |
+
- type: pearson_manhattan
|
75 |
+
value: 0.7380110422340219
|
76 |
+
name: Pearson Manhattan
|
77 |
+
- type: spearman_manhattan
|
78 |
+
value: 0.7452082040848071
|
79 |
+
name: Spearman Manhattan
|
80 |
+
- type: pearson_euclidean
|
81 |
+
value: 0.7386577662108481
|
82 |
+
name: Pearson Euclidean
|
83 |
+
- type: spearman_euclidean
|
84 |
+
value: 0.7458961406429292
|
85 |
+
name: Spearman Euclidean
|
86 |
+
- type: pearson_dot
|
87 |
+
value: 0.6480820840127198
|
88 |
+
name: Pearson Dot
|
89 |
+
- type: spearman_dot
|
90 |
+
value: 0.6478256799308721
|
91 |
+
name: Spearman Dot
|
92 |
+
- type: pearson_max
|
93 |
+
value: 0.7386577662108481
|
94 |
+
name: Pearson Max
|
95 |
+
- type: spearman_max
|
96 |
+
value: 0.7458961406429292
|
97 |
+
name: Spearman Max
|
98 |
+
- task:
|
99 |
+
type: semantic-similarity
|
100 |
+
name: Semantic Similarity
|
101 |
+
dataset:
|
102 |
+
name: pritamdeka/stsb assamese translated test
|
103 |
+
type: pritamdeka/stsb-assamese-translated-test
|
104 |
+
metrics:
|
105 |
+
- type: pearson_cosine
|
106 |
+
value: 0.656822131496386
|
107 |
+
name: Pearson Cosine
|
108 |
+
- type: spearman_cosine
|
109 |
+
value: 0.6621886312595516
|
110 |
+
name: Spearman Cosine
|
111 |
+
- type: pearson_manhattan
|
112 |
+
value: 0.6675496858061083
|
113 |
+
name: Pearson Manhattan
|
114 |
+
- type: spearman_manhattan
|
115 |
+
value: 0.6722470705036974
|
116 |
+
name: Spearman Manhattan
|
117 |
+
- type: pearson_euclidean
|
118 |
+
value: 0.6681862838868354
|
119 |
+
name: Pearson Euclidean
|
120 |
+
- type: spearman_euclidean
|
121 |
+
value: 0.6727345795749732
|
122 |
+
name: Spearman Euclidean
|
123 |
+
- type: pearson_dot
|
124 |
+
value: 0.5691955650489428
|
125 |
+
name: Pearson Dot
|
126 |
+
- type: spearman_dot
|
127 |
+
value: 0.570867962692759
|
128 |
+
name: Spearman Dot
|
129 |
+
- type: pearson_max
|
130 |
+
value: 0.6681862838868354
|
131 |
+
name: Pearson Max
|
132 |
+
- type: spearman_max
|
133 |
+
value: 0.6727345795749732
|
134 |
+
name: Spearman Max
|
135 |
+
---
|
136 |
+
|
137 |
+
# SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
|
138 |
+
|
139 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
140 |
+
|
141 |
+
## Model Details
|
142 |
+
|
143 |
+
### Model Description
|
144 |
+
- **Model Type:** Sentence Transformer
|
145 |
+
- **Base model:** [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) <!-- at revision 45c032ab32cc946ad88a166f7cb282f58c753c2e -->
|
146 |
+
- **Maximum Sequence Length:** 512 tokens
|
147 |
+
- **Output Dimensionality:** 768 tokens
|
148 |
+
- **Similarity Function:** Cosine Similarity
|
149 |
+
<!-- - **Training Dataset:** Unknown -->
|
150 |
+
<!-- - **Language:** Unknown -->
|
151 |
+
<!-- - **License:** Unknown -->
|
152 |
+
|
153 |
+
### Model Sources
|
154 |
+
|
155 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
156 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
157 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
158 |
+
|
159 |
+
### Full Model Architecture
|
160 |
+
|
161 |
+
```
|
162 |
+
SentenceTransformer(
|
163 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
164 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
165 |
+
)
|
166 |
+
```
|
167 |
+
|
168 |
+
## Usage
|
169 |
+
|
170 |
+
### Direct Usage (Sentence Transformers)
|
171 |
+
|
172 |
+
First install the Sentence Transformers library:
|
173 |
+
|
174 |
+
```bash
|
175 |
+
pip install -U sentence-transformers
|
176 |
+
```
|
177 |
+
|
178 |
+
Then you can load this model and run inference.
|
179 |
+
```python
|
180 |
+
from sentence_transformers import SentenceTransformer
|
181 |
+
|
182 |
+
# Download from the 🤗 Hub
|
183 |
+
model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1")
|
184 |
+
# Run inference
|
185 |
+
sentences = [
|
186 |
+
'মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল',
|
187 |
+
'মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল লাগিল।',
|
188 |
+
'Shannon এ বাৰ্তা উপেক্ষা কৰিছে।',
|
189 |
+
]
|
190 |
+
embeddings = model.encode(sentences)
|
191 |
+
print(embeddings.shape)
|
192 |
+
# [3, 768]
|
193 |
+
|
194 |
+
# Get the similarity scores for the embeddings
|
195 |
+
similarities = model.similarity(embeddings, embeddings)
|
196 |
+
print(similarities.shape)
|
197 |
+
# [3, 3]
|
198 |
+
```
|
199 |
+
|
200 |
+
<!--
|
201 |
+
### Direct Usage (Transformers)
|
202 |
+
|
203 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
204 |
+
|
205 |
+
</details>
|
206 |
+
-->
|
207 |
+
|
208 |
+
<!--
|
209 |
+
### Downstream Usage (Sentence Transformers)
|
210 |
+
|
211 |
+
You can finetune this model on your own dataset.
|
212 |
+
|
213 |
+
<details><summary>Click to expand</summary>
|
214 |
+
|
215 |
+
</details>
|
216 |
+
-->
|
217 |
+
|
218 |
+
<!--
|
219 |
+
### Out-of-Scope Use
|
220 |
+
|
221 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
222 |
+
-->
|
223 |
+
|
224 |
+
## Evaluation
|
225 |
+
|
226 |
+
### Metrics
|
227 |
+
|
228 |
+
#### Semantic Similarity
|
229 |
+
* Dataset: `pritamdeka/stsb-assamese-translated-dev`
|
230 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
231 |
+
|
232 |
+
| Metric | Value |
|
233 |
+
|:--------------------|:-----------|
|
234 |
+
| pearson_cosine | 0.717 |
|
235 |
+
| **spearman_cosine** | **0.7221** |
|
236 |
+
| pearson_manhattan | 0.738 |
|
237 |
+
| spearman_manhattan | 0.7452 |
|
238 |
+
| pearson_euclidean | 0.7387 |
|
239 |
+
| spearman_euclidean | 0.7459 |
|
240 |
+
| pearson_dot | 0.6481 |
|
241 |
+
| spearman_dot | 0.6478 |
|
242 |
+
| pearson_max | 0.7387 |
|
243 |
+
| spearman_max | 0.7459 |
|
244 |
+
|
245 |
+
#### Semantic Similarity
|
246 |
+
* Dataset: `pritamdeka/stsb-assamese-translated-test`
|
247 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
248 |
+
|
249 |
+
| Metric | Value |
|
250 |
+
|:--------------------|:-----------|
|
251 |
+
| pearson_cosine | 0.6568 |
|
252 |
+
| **spearman_cosine** | **0.6622** |
|
253 |
+
| pearson_manhattan | 0.6675 |
|
254 |
+
| spearman_manhattan | 0.6722 |
|
255 |
+
| pearson_euclidean | 0.6682 |
|
256 |
+
| spearman_euclidean | 0.6727 |
|
257 |
+
| pearson_dot | 0.5692 |
|
258 |
+
| spearman_dot | 0.5709 |
|
259 |
+
| pearson_max | 0.6682 |
|
260 |
+
| spearman_max | 0.6727 |
|
261 |
+
|
262 |
+
<!--
|
263 |
+
## Bias, Risks and Limitations
|
264 |
+
|
265 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
266 |
+
-->
|
267 |
+
|
268 |
+
<!--
|
269 |
+
### Recommendations
|
270 |
+
|
271 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
272 |
+
-->
|
273 |
+
|
274 |
+
## Training Details
|
275 |
+
|
276 |
+
### Training Hyperparameters
|
277 |
+
#### Non-Default Hyperparameters
|
278 |
+
|
279 |
+
- `eval_strategy`: steps
|
280 |
+
- `per_device_train_batch_size`: 64
|
281 |
+
- `per_device_eval_batch_size`: 64
|
282 |
+
- `num_train_epochs`: 1
|
283 |
+
- `warmup_ratio`: 0.1
|
284 |
+
- `fp16`: True
|
285 |
+
- `load_best_model_at_end`: True
|
286 |
+
- `batch_sampler`: no_duplicates
|
287 |
+
|
288 |
+
#### All Hyperparameters
|
289 |
+
<details><summary>Click to expand</summary>
|
290 |
+
|
291 |
+
- `overwrite_output_dir`: False
|
292 |
+
- `do_predict`: False
|
293 |
+
- `eval_strategy`: steps
|
294 |
+
- `prediction_loss_only`: True
|
295 |
+
- `per_device_train_batch_size`: 64
|
296 |
+
- `per_device_eval_batch_size`: 64
|
297 |
+
- `per_gpu_train_batch_size`: None
|
298 |
+
- `per_gpu_eval_batch_size`: None
|
299 |
+
- `gradient_accumulation_steps`: 1
|
300 |
+
- `eval_accumulation_steps`: None
|
301 |
+
- `learning_rate`: 5e-05
|
302 |
+
- `weight_decay`: 0.0
|
303 |
+
- `adam_beta1`: 0.9
|
304 |
+
- `adam_beta2`: 0.999
|
305 |
+
- `adam_epsilon`: 1e-08
|
306 |
+
- `max_grad_norm`: 1.0
|
307 |
+
- `num_train_epochs`: 1
|
308 |
+
- `max_steps`: -1
|
309 |
+
- `lr_scheduler_type`: linear
|
310 |
+
- `lr_scheduler_kwargs`: {}
|
311 |
+
- `warmup_ratio`: 0.1
|
312 |
+
- `warmup_steps`: 0
|
313 |
+
- `log_level`: passive
|
314 |
+
- `log_level_replica`: warning
|
315 |
+
- `log_on_each_node`: True
|
316 |
+
- `logging_nan_inf_filter`: True
|
317 |
+
- `save_safetensors`: True
|
318 |
+
- `save_on_each_node`: False
|
319 |
+
- `save_only_model`: False
|
320 |
+
- `restore_callback_states_from_checkpoint`: False
|
321 |
+
- `no_cuda`: False
|
322 |
+
- `use_cpu`: False
|
323 |
+
- `use_mps_device`: False
|
324 |
+
- `seed`: 42
|
325 |
+
- `data_seed`: None
|
326 |
+
- `jit_mode_eval`: False
|
327 |
+
- `use_ipex`: False
|
328 |
+
- `bf16`: False
|
329 |
+
- `fp16`: True
|
330 |
+
- `fp16_opt_level`: O1
|
331 |
+
- `half_precision_backend`: auto
|
332 |
+
- `bf16_full_eval`: False
|
333 |
+
- `fp16_full_eval`: False
|
334 |
+
- `tf32`: None
|
335 |
+
- `local_rank`: 0
|
336 |
+
- `ddp_backend`: None
|
337 |
+
- `tpu_num_cores`: None
|
338 |
+
- `tpu_metrics_debug`: False
|
339 |
+
- `debug`: []
|
340 |
+
- `dataloader_drop_last`: False
|
341 |
+
- `dataloader_num_workers`: 0
|
342 |
+
- `dataloader_prefetch_factor`: None
|
343 |
+
- `past_index`: -1
|
344 |
+
- `disable_tqdm`: False
|
345 |
+
- `remove_unused_columns`: True
|
346 |
+
- `label_names`: None
|
347 |
+
- `load_best_model_at_end`: True
|
348 |
+
- `ignore_data_skip`: False
|
349 |
+
- `fsdp`: []
|
350 |
+
- `fsdp_min_num_params`: 0
|
351 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
352 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
353 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
354 |
+
- `deepspeed`: None
|
355 |
+
- `label_smoothing_factor`: 0.0
|
356 |
+
- `optim`: adamw_torch
|
357 |
+
- `optim_args`: None
|
358 |
+
- `adafactor`: False
|
359 |
+
- `group_by_length`: False
|
360 |
+
- `length_column_name`: length
|
361 |
+
- `ddp_find_unused_parameters`: None
|
362 |
+
- `ddp_bucket_cap_mb`: None
|
363 |
+
- `ddp_broadcast_buffers`: False
|
364 |
+
- `dataloader_pin_memory`: True
|
365 |
+
- `dataloader_persistent_workers`: False
|
366 |
+
- `skip_memory_metrics`: True
|
367 |
+
- `use_legacy_prediction_loop`: False
|
368 |
+
- `push_to_hub`: False
|
369 |
+
- `resume_from_checkpoint`: None
|
370 |
+
- `hub_model_id`: None
|
371 |
+
- `hub_strategy`: every_save
|
372 |
+
- `hub_private_repo`: False
|
373 |
+
- `hub_always_push`: False
|
374 |
+
- `gradient_checkpointing`: False
|
375 |
+
- `gradient_checkpointing_kwargs`: None
|
376 |
+
- `include_inputs_for_metrics`: False
|
377 |
+
- `eval_do_concat_batches`: True
|
378 |
+
- `fp16_backend`: auto
|
379 |
+
- `push_to_hub_model_id`: None
|
380 |
+
- `push_to_hub_organization`: None
|
381 |
+
- `mp_parameters`:
|
382 |
+
- `auto_find_batch_size`: False
|
383 |
+
- `full_determinism`: False
|
384 |
+
- `torchdynamo`: None
|
385 |
+
- `ray_scope`: last
|
386 |
+
- `ddp_timeout`: 1800
|
387 |
+
- `torch_compile`: False
|
388 |
+
- `torch_compile_backend`: None
|
389 |
+
- `torch_compile_mode`: None
|
390 |
+
- `dispatch_batches`: None
|
391 |
+
- `split_batches`: None
|
392 |
+
- `include_tokens_per_second`: False
|
393 |
+
- `include_num_input_tokens_seen`: False
|
394 |
+
- `neftune_noise_alpha`: None
|
395 |
+
- `optim_target_modules`: None
|
396 |
+
- `batch_eval_metrics`: False
|
397 |
+
- `eval_on_start`: False
|
398 |
+
- `batch_sampler`: no_duplicates
|
399 |
+
- `multi_dataset_batch_sampler`: proportional
|
400 |
+
|
401 |
+
</details>
|
402 |
+
|
403 |
+
### Training Logs
|
404 |
+
| Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
|
405 |
+
|:----------:|:---------:|:-------------:|:----------:|:-------------------------------------------------------:|:--------------------------------------------------------:|
|
406 |
+
| 0 | 0 | - | - | 0.5489 | - |
|
407 |
+
| 0.0489 | 500 | 1.9387 | 1.7308 | 0.6808 | - |
|
408 |
+
| 0.0978 | 1000 | 1.0503 | 1.7373 | 0.6689 | - |
|
409 |
+
| 0.1467 | 1500 | 0.92 | 1.5838 | 0.6761 | - |
|
410 |
+
| 0.1956 | 2000 | 0.8754 | 1.4807 | 0.6518 | - |
|
411 |
+
| 0.2445 | 2500 | 0.7988 | 1.3797 | 0.6853 | - |
|
412 |
+
| 0.2933 | 3000 | 0.7606 | 1.3713 | 0.7108 | - |
|
413 |
+
| 0.3422 | 3500 | 0.7228 | 1.2510 | 0.6677 | - |
|
414 |
+
| 0.3911 | 4000 | 0.688 | 1.2374 | 0.6734 | - |
|
415 |
+
| 0.4400 | 4500 | 0.6992 | 1.2173 | 0.6891 | - |
|
416 |
+
| 0.4889 | 5000 | 0.6108 | 1.1638 | 0.7017 | - |
|
417 |
+
| 0.5378 | 5500 | 0.612 | 1.0815 | 0.7102 | - |
|
418 |
+
| 0.5867 | 6000 | 0.6259 | 1.0664 | 0.7202 | - |
|
419 |
+
| 0.6356 | 6500 | 0.5863 | 1.0464 | 0.7047 | - |
|
420 |
+
| 0.6845 | 7000 | 0.5941 | 1.0111 | 0.7101 | - |
|
421 |
+
| 0.7334 | 7500 | 0.5436 | 1.0023 | 0.7171 | - |
|
422 |
+
| 0.7822 | 8000 | 0.555 | 0.9633 | 0.7202 | - |
|
423 |
+
| 0.8311 | 8500 | 0.5466 | 0.9651 | 0.7279 | - |
|
424 |
+
| 0.8800 | 9000 | 0.5326 | 0.9611 | 0.7262 | - |
|
425 |
+
| 0.9289 | 9500 | 0.5055 | 0.9313 | 0.7276 | - |
|
426 |
+
| **0.9778** | **10000** | **0.4828** | **0.9172** | **0.7221** | **-** |
|
427 |
+
| 1.0 | 10227 | - | - | - | 0.6622 |
|
428 |
+
|
429 |
+
* The bold row denotes the saved checkpoint.
|
430 |
+
|
431 |
+
### Framework Versions
|
432 |
+
- Python: 3.10.12
|
433 |
+
- Sentence Transformers: 3.0.1
|
434 |
+
- Transformers: 4.42.4
|
435 |
+
- PyTorch: 2.3.1+cu121
|
436 |
+
- Accelerate: 0.32.1
|
437 |
+
- Datasets: 2.20.0
|
438 |
+
- Tokenizers: 0.19.1
|
439 |
+
|
440 |
+
## Citation
|
441 |
+
|
442 |
+
### BibTeX
|
443 |
+
|
444 |
+
#### Sentence Transformers
|
445 |
+
```bibtex
|
446 |
+
@inproceedings{reimers-2019-sentence-bert,
|
447 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
448 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
449 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
450 |
+
month = "11",
|
451 |
+
year = "2019",
|
452 |
+
publisher = "Association for Computational Linguistics",
|
453 |
+
url = "https://arxiv.org/abs/1908.10084",
|
454 |
+
}
|
455 |
+
```
|
456 |
+
|
457 |
+
#### MultipleNegativesRankingLoss
|
458 |
+
```bibtex
|
459 |
+
@misc{henderson2017efficient,
|
460 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
461 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
462 |
+
year={2017},
|
463 |
+
eprint={1705.00652},
|
464 |
+
archivePrefix={arXiv},
|
465 |
+
primaryClass={cs.CL}
|
466 |
+
}
|
467 |
+
```
|
468 |
+
|
469 |
+
<!--
|
470 |
+
## Glossary
|
471 |
+
|
472 |
+
*Clearly define terms in order to be accessible across audiences.*
|
473 |
+
-->
|
474 |
+
|
475 |
+
<!--
|
476 |
+
## Model Card Authors
|
477 |
+
|
478 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
479 |
+
-->
|
480 |
+
|
481 |
+
<!--
|
482 |
+
## Model Card Contact
|
483 |
+
|
484 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
485 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/training_nli_v2_distilbert-distilbert-base-multilingual-cased-2024-07-17_18-23-02/final",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_past": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"qa_dropout": 0.1,
|
19 |
+
"seq_classif_dropout": 0.2,
|
20 |
+
"sinusoidal_pos_embds": false,
|
21 |
+
"tie_weights_": true,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.42.4",
|
24 |
+
"vocab_size": 119547
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:889aea5cebb8fcda150d279cb4147adb1db46ca2e57679bb212046146e3c3cc7
|
3 |
+
size 538947416
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": false,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "DistilBertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|