|
--- |
|
license: llama3 |
|
base_model: |
|
- princeton-nlp/Llama-3-8B-ProLong-64k-Base |
|
datasets: |
|
- princeton-nlp/prolong-data-64K |
|
- princeton-nlp/prolong-data-512K |
|
model-index: |
|
- name: Llama-3-8B-ProLong-512k-Base |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 53.22 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 29.85 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 6.04 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 1.57 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 12.68 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 25.88 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# princeton_nlp/Llama-3-8B-ProLong-512k-Base |
|
|
|
[[Paper](https://arxiv.org/pdf/2410.02660)] [[HF Collection](https://huggingface.co/collections/princeton-nlp/prolong-66c72d55d2051a86ac7bd7e4)] [[Code](https://github.com/princeton-nlp/ProLong)] |
|
|
|
|
|
**ProLong** (<u>Pr</u>incet<u>o</u>n <u>long</u>-context language models) is a family of long-context models that are continued trained and supervised fine-tuned from Llama-3-8B, with a maximum context window of 512K tokens. Our [main ProLong model](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct) is one of the best-performing long-context models at the 10B scale (evaluated by [HELMET](https://github.com/princeton-nlp/helmet)). |
|
|
|
To train this strong long-context model, we conduct thorough ablations on the long-context pre-training data, SFT data, and numerous other design choices. We demonstrate our findings in our paper, [How to Train Long-Context Language Models (Effectively)](https://arxiv.org/pdf/2410.02660). |
|
|
|
|
|
Authors: [Tianyu Gao](https://gaotianyu.xyz/about)\*, [Alexander Wettig](https://www.cs.princeton.edu/~awettig/)\*, [Howard Yen](https://howard-yen.github.io/), [Danqi Chen](https://www.cs.princeton.edu/~danqic/) (* equal contribution) |
|
|
|
Contact: `{tianyug, awettig}@princeton.edu` |
|
|
|
## The ProLong Models |
|
|
|
- [princeton_nlp/Llama-3-8B-ProLong-64k-Base](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-64k-Base) |
|
- [princeton_nlp/Llama-3-8B-ProLong-64k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-64k-Instruct) |
|
- [princeton_nlp/Llama-3-8B-ProLong-512k-Base](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Base) ← you are here! |
|
- ⭐ [princeton_nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct) |
|
|
|
## Model card |
|
|
|
Here are some quick facts about our main ProLong model: [princeton-nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct). |
|
* Base model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
* Long-context continued training: 20B tokens on 64K training data ([princeton-nlp/prolong-data-64K](https://huggingface.co/datasets/princeton-nlp/prolong-data-64K)), and 20B tokens on 512K training data ([princeton-nlp/prolong-data-512K](https://huggingface.co/datasets/princeton-nlp/prolong-data-512K)) |
|
* Supervised fine-tuning (SFT): [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) |
|
* Maximum context window: 512K tokens |
|
|
|
|
|
<p align="center" style="margin-bottom: 0;"> |
|
<img width="80%" alt="image" src="https://github.com/user-attachments/assets/c31c9671-49fe-4776-91d2-de70ffd9f9a1"> |
|
</p> |
|
<p align="center" style="margin-top: 0; padding-top: 0;"> |
|
<em>ProLong performance on <a href="https://github.com/princeton-nlp/helmet">HELMET</a> averaged over 32K, 64K, and 128K lengths. All models are instruct models.</em> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<img width="80%" alt="image" src="https://github.com/user-attachments/assets/a36a7d0f-4480-4a29-80f3-208477707fb7"> |
|
</p> |
|
<p align="center" style="margin-top: 0;"> |
|
<em>ProLong training recipe.</em> |
|
</p> |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{gao2024prolong, |
|
title={Enabling Large Language Models to Generate Text with Citations}, |
|
author={Gao, Tianyu and Wettig, Alexander and Yen, Howard and Chen, Danqi}, |
|
year={2024}, |
|
} |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Llama-3-8B-ProLong-512k-Base) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |21.54| |
|
|IFEval (0-Shot) |53.22| |
|
|BBH (3-Shot) |29.85| |
|
|MATH Lvl 5 (4-Shot)| 6.04| |
|
|GPQA (0-shot) | 1.57| |
|
|MuSR (0-shot) |12.68| |
|
|MMLU-PRO (5-shot) |25.88| |
|
|
|
|