license: llama3
base_model:
- princeton-nlp/Llama-3-8B-ProLong-64k-Base
datasets:
- princeton-nlp/prolong-data-64K
- princeton-nlp/prolong-data-512K
model-index:
- name: Llama-3-8B-ProLong-512k-Base
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 53.22
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.85
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.04
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.57
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.68
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.88
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
name: Open LLM Leaderboard
princeton_nlp/Llama-3-8B-ProLong-512k-Base
[Paper] [HF Collection] [Code]
ProLong (Princeton long-context language models) is a family of long-context models that are continued trained and supervised fine-tuned from Llama-3-8B, with a maximum context window of 512K tokens. Our main ProLong model is one of the best-performing long-context models at the 10B scale (evaluated by HELMET).
To train this strong long-context model, we conduct thorough ablations on the long-context pre-training data, SFT data, and numerous other design choices. We demonstrate our findings in our paper, How to Train Long-Context Language Models (Effectively).
Authors: Tianyu Gao*, Alexander Wettig*, Howard Yen, Danqi Chen (* equal contribution)
Contact: {tianyug, awettig}@princeton.edu
The ProLong Models
- princeton_nlp/Llama-3-8B-ProLong-64k-Base
- princeton_nlp/Llama-3-8B-ProLong-64k-Instruct
- princeton_nlp/Llama-3-8B-ProLong-512k-Base ← you are here!
- ⭐ princeton_nlp/Llama-3-8B-ProLong-512k-Instruct
Model card
Here are some quick facts about our main ProLong model: princeton-nlp/Llama-3-8B-ProLong-512k-Instruct.
- Base model: meta-llama/Meta-Llama-3-8B-Instruct
- Long-context continued training: 20B tokens on 64K training data (princeton-nlp/prolong-data-64K), and 20B tokens on 512K training data (princeton-nlp/prolong-data-512K)
- Supervised fine-tuning (SFT): UltraChat
- Maximum context window: 512K tokens
ProLong performance on HELMET averaged over 32K, 64K, and 128K lengths. All models are instruct models.
ProLong training recipe.
Citation
@article{gao2024prolong,
title={Enabling Large Language Models to Generate Text with Citations},
author={Gao, Tianyu and Wettig, Alexander and Yen, Howard and Chen, Danqi},
year={2024},
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.54 |
IFEval (0-Shot) | 53.22 |
BBH (3-Shot) | 29.85 |
MATH Lvl 5 (4-Shot) | 6.04 |
GPQA (0-shot) | 1.57 |
MuSR (0-shot) | 12.68 |
MMLU-PRO (5-shot) | 25.88 |