Safetensors
llama
leaderboard-pr-bot's picture
Adding Evaluation Results
47fce0b verified
|
raw
history blame
6.76 kB
metadata
license: llama3
base_model:
  - princeton-nlp/Llama-3-8B-ProLong-64k-Base
datasets:
  - princeton-nlp/prolong-data-64K
  - princeton-nlp/prolong-data-512K
model-index:
  - name: Llama-3-8B-ProLong-512k-Base
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 53.22
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 29.85
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 6.04
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.57
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.68
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 25.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-512k-Base
          name: Open LLM Leaderboard

princeton_nlp/Llama-3-8B-ProLong-512k-Base

[Paper] [HF Collection] [Code]

ProLong (Princeton long-context language models) is a family of long-context models that are continued trained and supervised fine-tuned from Llama-3-8B, with a maximum context window of 512K tokens. Our main ProLong model is one of the best-performing long-context models at the 10B scale (evaluated by HELMET).

To train this strong long-context model, we conduct thorough ablations on the long-context pre-training data, SFT data, and numerous other design choices. We demonstrate our findings in our paper, How to Train Long-Context Language Models (Effectively).

Authors: Tianyu Gao*, Alexander Wettig*, Howard Yen, Danqi Chen (* equal contribution)

Contact: {tianyug, awettig}@princeton.edu

The ProLong Models

Model card

Here are some quick facts about our main ProLong model: princeton-nlp/Llama-3-8B-ProLong-512k-Instruct.

image

ProLong performance on HELMET averaged over 32K, 64K, and 128K lengths. All models are instruct models.

image

ProLong training recipe.

Citation

@article{gao2024prolong,
    title={Enabling Large Language Models to Generate Text with Citations},
    author={Gao, Tianyu and Wettig, Alexander and Yen, Howard and Chen, Danqi},
    year={2024},
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 21.54
IFEval (0-Shot) 53.22
BBH (3-Shot) 29.85
MATH Lvl 5 (4-Shot) 6.04
GPQA (0-shot) 1.57
MuSR (0-shot) 12.68
MMLU-PRO (5-shot) 25.88