metadata
license: apache-2.0
base_model: togethercomputer/RedPajama-INCITE-Base-3B-v1
datasets:
- johnrobinsn/alpaca-cleaned
tags:
- lora
- alpaca
- peft
- redpajama
RedPajama-3B-instruct-lora
This is an instruction fine-tuned model of https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1, using int8
mixed training.
Training dataset
Cleaned version of alpaca from https://huggingface.co/datasets/johnrobinsn/alpaca-cleaned.
How to use
from huggingface_hub import model_info, hf_hub_download
from peft import LoraConfig, get_peft_model, set_peft_model_state_dict, TaskType
from textwrap import dedent
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "pcuenq/RedPajama-3B-instruct-lora"
# Load base model
info = model_info(model_id)
base_model = info.cardData["base_model"]
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Prepare for LoRA
lora_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["query_key_value"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model, lora_config)
# Download and apply LoRA weights
lora_filename = hf_hub_download(repo_id=model_id, filename="lora.bin")
lora_dict = torch.load(lora_filename)
set_peft_model_state_dict(model, lora_dict)
# Run inference
def generate_prompt(instruction, inputs=None):
if inputs is not None:
return dedent(
f"""\
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{inputs}
### Response:
"""
)
else:
return dedent(
f"""\
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
"""
)
prompt = generate_prompt("Has humankind ever set foot on the Moon?")
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=50, do_sample=True, temperature=1.0, top_p=0.7, top_k=50, return_dict_in_generate=True
)
tokens = outputs.sequences[0, input_length:]
# Strip from first <eos>
eos_pos = (tokens == tokenizer.eos_token_id).nonzero()
if eos_pos.numel() > 0:
tokens = tokens[:eos_pos[0].item()]
output_str = tokenizer.decode(tokens)
print(output_str)