|
--- |
|
license: apache-2.0 |
|
base_model: togethercomputer/RedPajama-INCITE-Base-3B-v1 |
|
datasets: |
|
- johnrobinsn/alpaca-cleaned |
|
tags: |
|
- lora |
|
- alpaca |
|
- peft |
|
- redpajama |
|
--- |
|
|
|
# RedPajama-3B-instruct-lora |
|
|
|
This is an instruction fine-tuned model of https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1, using `int8` mixed training. |
|
|
|
## Training dataset |
|
|
|
Cleaned version of alpaca from https://huggingface.co/datasets/johnrobinsn/alpaca-cleaned. |
|
|
|
## How to use |
|
|
|
```Python |
|
from huggingface_hub import model_info, hf_hub_download |
|
from peft import LoraConfig, get_peft_model, set_peft_model_state_dict, TaskType |
|
from textwrap import dedent |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_id = "pcuenq/RedPajama-3B-instruct-lora" |
|
|
|
# Load base model |
|
|
|
info = model_info(model_id) |
|
base_model = info.cardData["base_model"] |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_8bit=True, |
|
device_map="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Prepare for LoRA |
|
|
|
lora_config = LoraConfig( |
|
r=8, |
|
lora_alpha=16, |
|
target_modules=["query_key_value"], |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type=TaskType.CAUSAL_LM |
|
) |
|
|
|
model = get_peft_model(model, lora_config) |
|
|
|
# Download and apply LoRA weights |
|
lora_filename = hf_hub_download(repo_id=model_id, filename="lora.bin") |
|
lora_dict = torch.load(lora_filename) |
|
set_peft_model_state_dict(model, lora_dict) |
|
|
|
# Run inference |
|
|
|
def generate_prompt(instruction, inputs=None): |
|
if inputs is not None: |
|
return dedent( |
|
f"""\ |
|
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Input: |
|
{inputs} |
|
|
|
### Response: |
|
""" |
|
) |
|
else: |
|
return dedent( |
|
f"""\ |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Response: |
|
""" |
|
) |
|
|
|
prompt = generate_prompt("Has humankind ever set foot on the Moon?") |
|
inputs = tokenizer(prompt, return_tensors='pt').to(model.device) |
|
input_length = inputs.input_ids.shape[1] |
|
outputs = model.generate( |
|
**inputs, max_new_tokens=50, do_sample=True, temperature=1.0, top_p=0.7, top_k=50, return_dict_in_generate=True |
|
) |
|
tokens = outputs.sequences[0, input_length:] |
|
|
|
# Strip from first <eos> |
|
eos_pos = (tokens == tokenizer.eos_token_id).nonzero() |
|
if eos_pos.numel() > 0: |
|
tokens = tokens[:eos_pos[0].item()] |
|
|
|
output_str = tokenizer.decode(tokens) |
|
print(output_str) |
|
``` |
|
|
|
|