|
--- |
|
language: |
|
- tr |
|
tags: |
|
- automatic-speech-recognition |
|
- common_voice |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: phoneme_test_3_tr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Wav2vec2-xls-r-phoneme-300m-tr |
|
|
|
This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6380 |
|
- Wer: 0.1664 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 13.6687 | 0.92 | 100 | 12.4567 | 1.0 | |
|
| 3.4219 | 1.83 | 200 | 3.4704 | 1.0 | |
|
| 3.1846 | 2.75 | 300 | 3.2281 | 0.9935 | |
|
| 2.0076 | 3.67 | 400 | 1.7415 | 0.5222 | |
|
| 1.0244 | 4.59 | 500 | 1.0290 | 0.3323 | |
|
| 0.7095 | 5.5 | 600 | 0.8424 | 0.2859 | |
|
| 0.619 | 6.42 | 700 | 0.7389 | 0.2232 | |
|
| 0.3541 | 7.34 | 800 | 0.7049 | 0.2043 | |
|
| 0.2946 | 8.26 | 900 | 0.7065 | 0.2153 | |
|
| 0.2868 | 9.17 | 1000 | 0.6840 | 0.2115 | |
|
| 0.2245 | 10.09 | 1100 | 0.6714 | 0.1952 | |
|
| 0.1394 | 11.01 | 1200 | 0.6864 | 0.1954 | |
|
| 0.1288 | 11.93 | 1300 | 0.6696 | 0.2017 | |
|
| 0.1568 | 12.84 | 1400 | 0.6468 | 0.1843 | |
|
| 0.1269 | 13.76 | 1500 | 0.6736 | 0.1965 | |
|
| 0.1101 | 14.68 | 1600 | 0.6689 | 0.1915 | |
|
| 0.1388 | 15.6 | 1700 | 0.6690 | 0.1782 | |
|
| 0.0739 | 16.51 | 1800 | 0.6364 | 0.1734 | |
|
| 0.0897 | 17.43 | 1900 | 0.6480 | 0.1748 | |
|
| 0.0795 | 18.35 | 2000 | 0.6356 | 0.1695 | |
|
| 0.0823 | 19.27 | 2100 | 0.6382 | 0.1685 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.13.0.dev0 |
|
- Pytorch 1.8.1 |
|
- Datasets 1.16.2.dev0 |
|
- Tokenizers 0.10.3 |
|
|