Wav2vec2-xls-r-phoneme-300m-tr
This model is a fine-tuned version of wav2vec2-xls-r-300m on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:
- Loss: 0.6380
- PER: 0.1664
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | PER |
---|---|---|---|---|
13.6687 | 0.92 | 100 | 12.4567 | 1.0 |
3.4219 | 1.83 | 200 | 3.4704 | 1.0 |
3.1846 | 2.75 | 300 | 3.2281 | 0.9935 |
2.0076 | 3.67 | 400 | 1.7415 | 0.5222 |
1.0244 | 4.59 | 500 | 1.0290 | 0.3323 |
0.7095 | 5.5 | 600 | 0.8424 | 0.2859 |
0.619 | 6.42 | 700 | 0.7389 | 0.2232 |
0.3541 | 7.34 | 800 | 0.7049 | 0.2043 |
0.2946 | 8.26 | 900 | 0.7065 | 0.2153 |
0.2868 | 9.17 | 1000 | 0.6840 | 0.2115 |
0.2245 | 10.09 | 1100 | 0.6714 | 0.1952 |
0.1394 | 11.01 | 1200 | 0.6864 | 0.1954 |
0.1288 | 11.93 | 1300 | 0.6696 | 0.2017 |
0.1568 | 12.84 | 1400 | 0.6468 | 0.1843 |
0.1269 | 13.76 | 1500 | 0.6736 | 0.1965 |
0.1101 | 14.68 | 1600 | 0.6689 | 0.1915 |
0.1388 | 15.6 | 1700 | 0.6690 | 0.1782 |
0.0739 | 16.51 | 1800 | 0.6364 | 0.1734 |
0.0897 | 17.43 | 1900 | 0.6480 | 0.1748 |
0.0795 | 18.35 | 2000 | 0.6356 | 0.1695 |
0.0823 | 19.27 | 2100 | 0.6382 | 0.1685 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.8.1
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.