metadata
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model-index:
- name: deberta_v3_amazon_reviews
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: en
metrics:
- name: Accuracy
type: accuracy
value: 0.61
deberta_v3_amazon_reviews
This model is a fine-tuned version of microsoft/deberta-v3-base on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set:
- Loss: 0.9723
- Accuracy: 0.61
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9339 | 0.2 | 5000 | 0.9879 | 0.5876 |
0.9386 | 0.4 | 10000 | 0.9408 | 0.5992 |
0.9127 | 0.6 | 15000 | 0.9118 | 0.6004 |
0.8997 | 0.8 | 20000 | 0.9192 | 0.607 |
0.8853 | 1.0 | 25000 | 0.9167 | 0.6018 |
0.8159 | 1.2 | 30000 | 0.9364 | 0.6064 |
0.8367 | 1.4 | 35000 | 0.9215 | 0.6174 |
0.8322 | 1.6 | 40000 | 0.9076 | 0.6108 |
0.8142 | 1.8 | 45000 | 0.9305 | 0.6148 |
0.8139 | 2.0 | 50000 | 0.9394 | 0.6092 |
0.7279 | 2.2 | 55000 | 0.9868 | 0.605 |
0.715 | 2.4 | 60000 | 0.9865 | 0.6072 |
0.7515 | 2.6 | 65000 | 0.9783 | 0.606 |
0.7363 | 2.8 | 70000 | 0.9765 | 0.6096 |
0.7405 | 3.0 | 75000 | 0.9723 | 0.61 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6