--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: deberta_v3_amazon_reviews results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Accuracy type: accuracy value: 0.61 --- # deberta_v3_amazon_reviews This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9723 - Accuracy: 0.61 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9339 | 0.2 | 5000 | 0.9879 | 0.5876 | | 0.9386 | 0.4 | 10000 | 0.9408 | 0.5992 | | 0.9127 | 0.6 | 15000 | 0.9118 | 0.6004 | | 0.8997 | 0.8 | 20000 | 0.9192 | 0.607 | | 0.8853 | 1.0 | 25000 | 0.9167 | 0.6018 | | 0.8159 | 1.2 | 30000 | 0.9364 | 0.6064 | | 0.8367 | 1.4 | 35000 | 0.9215 | 0.6174 | | 0.8322 | 1.6 | 40000 | 0.9076 | 0.6108 | | 0.8142 | 1.8 | 45000 | 0.9305 | 0.6148 | | 0.8139 | 2.0 | 50000 | 0.9394 | 0.6092 | | 0.7279 | 2.2 | 55000 | 0.9868 | 0.605 | | 0.715 | 2.4 | 60000 | 0.9865 | 0.6072 | | 0.7515 | 2.6 | 65000 | 0.9783 | 0.606 | | 0.7363 | 2.8 | 70000 | 0.9765 | 0.6096 | | 0.7405 | 3.0 | 75000 | 0.9723 | 0.61 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6